Skip to main content

Advertisement

Log in

Optimizing the sustainable decisions in a multi-echelon closed-loop supply chain of the manufacturing/remanufacturing products with a competitive environment

  • Original paper
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Along with raised public awareness about environmental issues, some supply chains have begun to develop eco-friendly strategies aiming to manufacture and (or) remanufacture green products. This research presents a new preferable gaming structure in a multi-echelon closed-loop supply chain including a manufacturer, a retailer/remanufacturer, and an intermediate collection center (which is a governmental entity). The supply chain is structured to sell the products in a first and a secondary market. The significance of the research ahead is enhanced due to the use of game theory in sustainability in a new competitive supply chain structure. Toward addressing sustainability requirements, emission reductions within manufacturing, remanufacturing, and delivery functions are considered in a two-period game-theoretic-based model. Regarding the customer’s low-carbon preferences in production and delivery, the manufacturer wholesales new products to the retailer, and then, the retailer forwards them to the primary market via a full truckload policy in the first period. Even more striking, considering the environmental commitments in the second period, used products are gathered by the collection center in a reverse flow and sent to the retailer/remanufacturer for remanufacturing processes. In this regard, a Stackelberg, a Nash game, and also a novel bargaining structure are developed in the first and second periods. Then, the resulting decentralized approach is compared with a centralized model, illustrating a better performance of the decentralized scenario. Finally, through numerical analyses, it is observed that there are ascending relations between the triple dimensions of reduction rates (in manufacturing, remanufacturing, and delivering) and the corresponding profits, in which incorporating low-carbon considerations in remanufacturing has a greater efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbey, J. D., Blackburn, J. D., & Guide, V. D. R., Jr. (2015a). Optimal pricing for new and remanufactured products. Journal of Operations Management, 36, 130–146.

    Article  Google Scholar 

  • Abbey, J. D., Blackburn, J. D., & Guide, V. D. R., Jr. (2015b). Optimal pricing for new and remanufactured products. Journal of Operations Management, 36, 130–146.

    Article  Google Scholar 

  • Agrawal, V. V., Atasu, A., & Van Ittersum, K. (2015). Remanufacturing, third-party competition, and consumers’ perceived value of new products. Management Science, 61(1), 60–72.

    Article  Google Scholar 

  • Ali, G., Abbas, S., & Qamer, F. M. (2013). How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia. Renewable and Sustainable Energy Reviews, 26, 632–638.

    Article  Google Scholar 

  • Atasu, A., Sarvary, M., & Van Wassenhove, L. N. (2008). Remanufacturing as a marketing strategy. Management Science, 54(10), 1731–1746.

    Article  Google Scholar 

  • Du, S., Ma, F., Fu, Z., Zhu, L., & Zhang, J. (2015). Game-theoretic analysis for an emission-dependent supply chain in a ‘cap-and-trade’ system. Annals of Operations Research, 228(1), 135–149.

    Article  Google Scholar 

  • Giri, B. C., Chakraborty, A., & Maiti, T. (2017). Pricing and return product collection decisions in a closed-loop supply chain with dual-channel in both forward and reverse logistics. Journal of Manufacturing Systems, 42, 104–123.

    Article  Google Scholar 

  • Hafezalkotob, A. (2017). Competition of domestic manufacturer and foreign supplier under sustainable development objectives of government. Applied Mathematics and Computation, 292, 294–308.

    Article  Google Scholar 

  • Heydari, J., & Ghasemi, M. (2018). A revenue sharing contract for reverse supply chain coordination under stochastic quality of returned products and uncertain remanufacturing capacity. Journal of Cleaner Production, 197, 607–615.

    Article  Google Scholar 

  • Heydari, J., Govindan, K., & Aslani, A. (2018). Pricing and greening decisions in a three-tier dual channel supply chain. International Journal of Production Economics (in press, corrected proof).

  • Jamali, M. B., & Rasti-Barzoki, M. (2018). A game theoretic approach for green and non-green product pricing in chain-to-chain competitive sustainable and regular dual-channel supply chains. Journal of Cleaner Production, 170, 1029–1043.

    Article  Google Scholar 

  • Jin, Y., Muriel, A., & Lu, Y. (2016). When to offer lower quality or remanufactured versions of a product. Decision Sciences, 47(4), 699–719.

    Article  Google Scholar 

  • Li, S., Zhu, Z., & Huang, L. (2009). Supply chain coordination and decision making under consignment contract with revenue sharing. International Journal of Production Economics, 120(1), 88–99.

    Article  Google Scholar 

  • Madani, S. R., & Rasti-Barzoki, M. (2017). Sustainable supply chain management with pricing, greening and governmental tariffs determining strategies: A game-theoretic approach. Computers & Industrial Engineering, 105, 287–298.

    Article  Google Scholar 

  • Maihami, R., Karimi, B., & Ghomi, S. M. T. F. (2017). Pricing and inventory control in a supply chain of deteriorating items: A non-cooperative strategy with probabilistic parameters. International Journal of Applied and Computational Mathematics, 3(3), 2477–2499.

    Article  Google Scholar 

  • Modak, N. M., Modak, N., Panda, S., & Sana, S. S. (2018). Analyzing structure of two-echelon closed-loop supply chain for pricing, quality and recycling management. Journal of Cleaner Production, 171, 512–528.

    Article  Google Scholar 

  • Nagarajan, M., & Sošić, G. (2008). Game-theoretic analysis of cooperation among supply chain agents: Review and extensions. European Journal of Operational Research, 187(3), 719–745.

    Article  Google Scholar 

  • Palevich, R. (2011). Lean sustainable supply chain the: How to create a green infrastructure with lean technologies (Ft press).

  • Safarzadeh, S., & Rasti-Barzoki, M. (2019a). A game theoretic approach for assessing residential energy-efficiency program considering rebound, consumer behavior, and government policies. Applied Energy, 233, 44–61.

    Article  Google Scholar 

  • Safarzadeh, S., & Rasti-Barzoki, M. (2019b). A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies. Energy, 167, 92–105.

    Article  Google Scholar 

  • Shu, T., Liao, H., Chen, S., Wang, S., Lai, K. K., & Gan, L. (2016). Analysing remanufacturing decisions of supply chain members in uncertainty of consumer preferences. Applied Economics, 48(34), 3208–3227.

    Article  Google Scholar 

  • Sinayi, M., & Rasti-Barzoki, M. (2018). A game theoretic approach for pricing, greening, and social welfare policies in a supply chain with government intervention. Journal of Cleaner Production, 196, 1443–1458.

    Article  Google Scholar 

  • Taleizadeh, A. A., Alizadeh-Basban, N., & Niaki, S. T. A. (2019). A closed-loop supply chain considering carbon reduction, quality improvement effort, and return policy under two remanufacturing scenarios. Journal of Cleaner Production, 232, 1230–1250.

    Article  Google Scholar 

  • Wang, N., He, Q., & Jiang, B. (2018a). Hybrid closed-loop supply chains with competition in recycling and product markets. International Journal of Production Economics. (in press, corrected proof).

  • Wang, X., Zhu, Y., Sun, H., & Jia, F. (2018b). Production decisions of new and remanufactured products: Implications for low carbon emission economy. Journal of Cleaner Production, 171, 1225–1243.

    Article  Google Scholar 

  • Watkins, L., Aitken, R., & Mather, D. (2016). Conscientious consumers: A relationship between moral foundations, political orientation and sustainable consumption. Journal of Cleaner Production, 134, 137–146.

    Article  Google Scholar 

  • Xiao, Y., Yang, S., Zhang, L., & Kuo, Y. H. (2016). Supply chain cooperation with price-sensitive demand and environmental impacts. Sustainability, 8(8), 716.

    Article  Google Scholar 

  • Xiong, Y., Zhou, Y., Li, G., Chan, H. K., & Xiong, Z. (2013). Don’t forget your supplier when remanufacturing. European Journal of Operational Research, 230(1), 15–25.

    Article  Google Scholar 

  • Xu, L., & Wang, C. (2018). Sustainable manufacturing in a closed-loop supply chain considering emission reduction and remanufacturing. Resources, Conservation and Recycling, 131, 297–304.

    Article  Google Scholar 

  • Xu, L., Wang, C., & Zhao, J. (2018). Decision and coordination in the dual-channel supply chain considering cap-and-trade regulation. Journal of Cleaner Production, 197, 551–561.

    Article  Google Scholar 

  • Yang, C. H., Liu, H. B., Ji, P., & Ma, X. (2016). Optimal acquisition and remanufacturing policies for multi-product remanufacturing systems. Journal of Cleaner Production, 135, 1571–1579.

    Article  Google Scholar 

  • Zhao, J., Wang, C., & Xu, L. (2019). Decision for pricing, service, and recycling of closed-loop supply chains considering different remanufacturing roles and technology authorizations. Computers & Industrial Engineering, 132, 59–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Maihami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof 1

For a multivariable function to be concave, it is incumbent to show that the sign of its Hessian matrix is the same as \(\left( { - 1} \right)^{\varepsilon }\) in which ε represents the order of the Hessian matrix. According to the defined profit function for \(\pi_{\text{cen}}^{1}\), the Hessian matrix of \(\pi_{\text{cen}}^{1}\) is calculated as follows:

$$H\left( {r_{1} , s_{1}^{\text{ma}} ,s_{1}^{\text{re}} } \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial r_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial r_{1} \partial s_{1}^{\text{ma}} }}} & {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial r_{1} \partial s_{1}^{\text{re}} }}} \\ {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial s_{1}^{\text{ma}} \partial r_{1} }}} & {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial s_{1}^{\text{ma2}} }}} & {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial s_{1}^{\text{ma}} \partial s_{1}^{\text{re}} }}} \\ {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial s_{1}^{\text{re}} \partial r_{1} }}} & {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial s_{1}^{\text{re}} \partial s_{1}^{\text{ma}} }}} & {\frac{{\partial^{2} \pi_{\text{cen}}^{1} }}{{\partial s_{1}^{\text{re2}} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2} & \theta & \beta \\ \theta & { - \lambda } & 0 \\ \beta & 0 & { - \sigma } \\ \end{array} } \right]$$

Regarding the Hessian matrix obtained above and knowing that \(2 - \theta^{2} > 0\), if the condition \(- 2\lambda \sigma + \theta^{2} \sigma + \beta^{2} \lambda < 0\) be satisfied, the joint concavity of the profit function on decision variables is proven.□

Proof 2

Similarly, the Hessian matrix of \(\pi_{\text{cen}}^{2}\) is obtained to demonstrate that the corresponding profit function is concave and also a negative definite. Therefore,

$$\begin{aligned} H\left( {r_{2} , s_{2}^{\text{ma}} , s_{2}^{\text{re}} , r', s^{\text{co}} ,s^{\text{rm}} } \right) = & \left[ {\begin{array}{*{20}l} {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r_{2}^{2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r_{2} \partial s_{2}^{\text{ma}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r_{2} \partial s_{2}^{\text{re}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r_{2} \partial r'}}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r_{2} \partial s^{\text{co}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r_{2} \partial s^{\text{rm}} }}} \hfill \\ {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{ma}} \partial r_{2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{ma2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{ma}} \partial s_{2}^{\text{re}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{ma}} \partial r'}}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{ma}} \partial s^{\text{co}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{ma}} \partial s^{\text{rm}} }}} \hfill \\ {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{re}} \partial r_{2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{re}} \partial s_{2}^{\text{ma}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{re2}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{re}} \partial r'}}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{re}} \partial s^{\text{co}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s_{2}^{\text{re}} \partial s^{\text{rm}} }}} \hfill \\ {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r'\partial r_{2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r'\partial s_{2}^{ma} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{\text{re}}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r'^{2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r'\partial s^{\text{co}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial r'\partial s^{\text{rm}} }}} \hfill \\ {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{co}} \partial r_{2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{co}} \partial s_{2}^{\text{ma}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{co}} \partial s_{2}^{\text{re}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{co}} \partial r'}}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{co2}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{co}} \partial s^{\text{rm}} }}} \hfill \\ {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{rm}} \partial r_{2} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{rm}} \partial s_{2}^{\text{ma}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{rm}} \partial s_{2}^{\text{re}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{rm}} \partial r'}}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{rm}} \partial s^{\text{co}} }}} \hfill & {\frac{{\partial^{2} \pi_{\text{cen}}^{2} }}{{\partial s^{\text{rm2}} }}} \hfill \\ \end{array} } \right] \\ = & \left[ {\begin{array}{*{20}l} { - 2} \hfill & \theta \hfill & \beta \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \theta \hfill & { - \lambda } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \beta \hfill & 0 \hfill & { - \sigma } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & { - 2} \hfill & \alpha \hfill & \beta \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & \alpha \hfill & { - \lambda '} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & \beta \hfill & 0 \hfill & { - \sigma } \hfill \\ \end{array} } \right] \\ \end{aligned}$$

Again, if the determinant of the above matrix be more than zero—i.e., if the condition \(4\lambda \sigma \left( {\lambda^{\prime}\sigma - 0} \right) + 2\sigma \theta^{2} \left( {\lambda^{\prime}\sigma - 0} \right) - 2\lambda \beta \left( {\lambda^{\prime}\sigma - 0} \right) = 4\lambda \lambda^{\prime}\sigma^{2} + 2\theta^{2} \lambda^{\prime}\sigma^{2} - 2\lambda \lambda^{\prime}\beta \sigma > 0\) be satisfied, the Hessian matrix of \(\pi_{\text{cen}}^{2}\) is a negative definite and also a joint concave function with respect to related decision variables.□

Proof 3

The concavity of the Hessian matrix of \(\pi_{{{\text{ma}}_{\left( 1 \right)} }}^{n}\) must be shown. Therefore,

$$H\left( {\varphi_{1} , s_{1}^{\text{ma}} } \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 1 \right)} }}^{n} }}{{\partial \varphi_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 1 \right)} }}^{n} }}{{\partial \varphi_{1} \partial s_{1}^{\text{ma}} }}} \\ {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 1 \right)} }}^{n} }}{{\partial s_{1}^{\text{ma}} \partial \varphi_{1} }}} & {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 1 \right)} }}^{n} }}{{\partial s_{1}^{{{\text{ma}}2}} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2\sigma } & {\theta \sigma } \\ {\theta \sigma } & {\beta^{2} \lambda - 2\sigma \lambda } \\ \end{array} } \right]$$

The Hessian matrix of obtained above is a negative definite and also concave with respect to \(\varphi_{1}\) and \(s_{1}^{\text{ma}}\) if the corresponding condition \(2\sigma^{2} \lambda - \lambda \sigma^{2} \beta^{2} - \theta^{2} \sigma^{2} > 0\) be satisfied.□

Proof 4

The second-order derivatives of \(\pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n}\) with respect to \(\varphi_{2}\) and \(s_{2}^{\text{ma}}\) are, respectively, \(\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n} }}{{\partial \varphi_{2}^{2} }} = - \frac{1}{2}\) and \(\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n} }}{{\partial s_{2}^{{{\text{ma}}2}} }} = - \lambda\). Therefore, \(\pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n}\) is jointly concave if the condition \(\frac{\lambda }{2} - \theta^{2} > 0\) be satisfied (as shown below).

$$H\left( {\varphi_{2} , s_{2}^{\text{ma}} } \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n} }}{{\partial \varphi_{2}^{2} }}} & {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n} }}{{\partial \varphi_{2} \partial s_{2}^{\text{ma}} }}} \\ {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n} }}{{\partial s_{2}^{\text{ma}} \partial \varphi_{2} }}} & {\frac{{\partial^{2} \pi_{{{\text{ma}}_{\left( 2 \right)} }}^{n} }}{{\partial s_{2}^{{{\text{ma}}2}} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - \frac{1}{2}} & \theta \\ \theta & { - \lambda } \\ \end{array} } \right]$$

Proof 5

In order to prove that the profit function \(\pi_{{{\text{re}}_{\left( 2 \right)} }}^{n}\) is concave and also a negative definite, the corresponding Hessian matrix is gained as follows:

$$H\left( {r_{2} , s_{2}^{\text{re}} } \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{{{\text{re}}_{\left( 2 \right)} }}^{n} }}{{\partial r_{2}^{2} }}} & {\frac{{\partial^{2} \pi_{{{\text{re}}_{\left( 2 \right)} }}^{n} }}{{\partial r_{2} \partial s_{2}^{\text{re}} }}} \\ {\frac{{\partial^{2} \pi_{{{\text{re}}_{\left( 2 \right)} }}^{n} }}{{\partial s_{2}^{\text{re}} \partial r_{2} }}} & {\frac{{\partial^{2} \pi_{{{\text{re}}_{\left( 2 \right)} }}^{n} }}{{\partial s_{2}^{{{\text{re}}2}} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2} & \beta \\ \beta & { - \sigma } \\ \end{array} } \right]$$

Thereupon, if the determinant of \(H\left( {r_{2} , s_{2}^{\text{re}} } \right)\) be more than zero (\(2\sigma - \beta^{2} > 0)\), the function \(\pi_{{{\text{re}}_{\left( 2 \right)} }}^{n}\) is strictly concave and also a negative definite.□

Proof 6

It can be shown that \(\pi_{\text{rm}}^{c}\) is a concave function with respect to \(r'\) and \(s^{\text{rm}}\) as (33):

$$H\left( {r', s^{\text{rm}} } \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{\text{rm}}^{c} }}{{\partial r^{'2} }}} & {\frac{{\partial^{2} \pi_{\text{rm}}^{c} }}{{\partial r'\partial s^{\text{rm}} }}} \\ {\frac{{\partial^{2} \pi_{\text{rm}}^{c} }}{{\partial s^{\text{rm}} \partial r'}}} & {\frac{{\partial^{2} \pi_{\text{rm}}^{c} }}{{\partial s^{\text{rm2}} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2} & \beta \\ \beta & { - \sigma } \\ \end{array} } \right]$$

It is obvious that \(\pi_{\text{rm}}^{c}\) is strictly concave if the condition \(2\sigma - \beta^{2} > 0\) be satisfied.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, S., Maihami, R. Optimizing the sustainable decisions in a multi-echelon closed-loop supply chain of the manufacturing/remanufacturing products with a competitive environment. Environ Dev Sustain 22, 6445–6471 (2020). https://doi.org/10.1007/s10668-019-00491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00491-5

Keywords

Navigation