Skip to main content

Advertisement

Log in

Quantifying climate change induced threats to wetland fisheries: a stakeholder-driven approach

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Wetlands are biologically sensitive habitats and envisaged as the most impacted systems by climate change. Floodplain wetlands of West Bengal, India, are important fisheries resources and provide tremendous economic and ecological services. There is lack of long-term quantified data to assess the impacts of climate change on floodplain wetlands fisheries in India. The article presents a stakeholder-driven approach to quantify the impacts of climate change on wetland fisheries. A modified Delphi method has been used to accomplish this. The present article discusses the modified methodology and the results obtained thereof. The study identified around seven potential climate change-induced threats on wetland fisheries among which water stress (95% consensus), wetland accretion/sedimentation (85%), aquatic weed proliferation (70%) and loss of wetland connectivity (65%) are high-priority issues demanding immediate management action. These issues are expected to further aggravate in future climatic scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeleke, M. L., Amos, T. T. & Fagbenr, O. A (2012) African catfish farmers’ perception on climate change and contribution of catfish production to household income on Lagos State, Nigeria. IIFET 2012 Tanzanian Proceedings, P1.

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268–281. doi:10.1016/j.gloenvcha.2006.02.006.

    Article  Google Scholar 

  • Allison, E. H., Adger, N. W., Badjeck, M. C, Brown, K., Conway D, Dulvy, N. K et al. (2005) Effects of climate change on the sustainability of capture and enhancement fisheries important to the poor: Analysis of the vulnerability and adaptability of fisher folk living in poverty, DFID Project No. R4778J.

  • Allison, E. H., Andrew, N. L., & Oliver, J. (2007). Enhancing the resilience of inland fisheries and aquaculture systems to climate change. SAT eJournal. http://ejournal.icrisat.org.

  • Badjeck, M. C., Allison, E. H., Halls, A. S., & Dulvy, N. K. (2010). Impacts of climate variability and change on fisherybased livelihoods. Marine Policy, 34, 375–383.

    Article  Google Scholar 

  • Bowes, G., & Salvucci, M. E. (1989). Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquatic Botany, 34, 233–266.

    Article  CAS  Google Scholar 

  • Brock, T. C. M., & Vierssen, W. V. (1992). Climatic change and hydrophyte-dominated communities in inland wetland ecosystems. Wetlands Ecology and Management, 2, 37–49.

    Article  Google Scholar 

  • Callaway, J. C., Borgnis, E. L., Turner, R. E., & Milan, C. S. (2012). Carbon sequestration and sediment accretion in San Francisco Bay Tidal wetlands. Estuaries and Coasts, 35, 1163–1181. doi:10.1007/s12237-012-9508-9.

    Article  CAS  Google Scholar 

  • Christensen, J. H., Hewitson, B., Busuioc, A., et al. (2007). Regional climate projections. In S. Solomon, D. Qin, M. Manning, et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 849–940). New York: Cambridge University Press.

    Google Scholar 

  • CIFRI (2000) Ecology and fisheries of Beels in West Bengal. Bulletin No. 103. CIFRI publication, Barrackpore. http://www.ernet.cifri.in.

  • CIFRI (2016) Annual Report (2015-16). ICAR-Central Inland Fisheries Research Institute, Barrackpore. http://www.ernet.cifri.in.

  • Close, P. G., Dobbs, R. & Davies, P. (2012) Summary Report—Assessment of the likely impacts of development and climate change on aquatic ecological assets in Northern Australia. A report for the National Water Commission, Australia. Tropical Rivers and Coastal Knowledge (TRaCK) Commonwealth Environmental Research Facility, Charles Darwin University, Darwin.

  • Cochrane, K., De Young, C., Soto, D. & Bahri, T. (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. Fisheries and Aquaculture Technical Paper No. 530. Rome, FAO. pp. 212.

  • Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of participants. Management Science, 9(3), 458–467.

    Article  Google Scholar 

  • Das, M. K., Srivastava, P. K., Rej, A., Mandal, M. L., & Sharma, A. P. (2016). A framework for assessing vulnerability of inland fisheries to impacts of climate variability in India. Mitigation and Adaptation Strategies for Global Change, 21(2), 279–296. doi:10.1007/s11027-014-9599-7.

    Article  Google Scholar 

  • Day, J. W., Christian, R. R., Boesch, D. M., et al. (2008). Consequences of climate change on the ecogeomorphology of Coastal wetlands. Estuaries and Coasts, 31, 477–491. doi:10.1007/s12237-008-9047-6.

    Article  Google Scholar 

  • Debusk, T. A., Ryther, J. H., & Williams, L. D. (1983). Evapo-transpiration of Eichhornia crassipes (Mart) Solms and Lemna minor L in Central Florida–Relation to canopy structure and season. Aquatic Botany, 16, 31–39.

    Article  Google Scholar 

  • Dhanya, P., & Ramachandran, A. (2015). Farmer’s perceptions of climate change and the proposed agriculture adaptation strategies in a semi arid region of south India. Journal of Integrative Environmental Sciences, 13(1), 1–18. doi:10.1080/1943815X.2015.1062031.

    Article  Google Scholar 

  • Diogo, H., Pereira, J. G., & Schmiing, M. (2017). Experience counts: Integrating spear fisher’s skills and knowledge in the evaluation of biological and ecological impacts. Fisheries Management and Ecology, 24(2), 95–102. doi:10.1111/fme.12206.

    Article  Google Scholar 

  • DoF West Bengal. (2016). Handbook of fisheries statistics. Salt Lake city: Department of fisheries, Government of West Bengal, Meen Bhavan.

  • Dudley, N., Stolton, S., Belokurov, A., Krueger, L., Lopoukhine, N., MacKinnon K et al. (2010) Natural solutions: Protected areas helping people cope with climate change, In: Joint report for IUCN-WCPA, TNC, UNDP, WCS, The World Bank and WWF. New York.

  • Dukes, J. S. (2000). Will the increasing atmospheric CO2 concentration affect the success of invasive species? In H. A. Mooney & R. J. Hobbs (Eds.), Invasive species in a changing world. Washington, DC: Island Press.

    Google Scholar 

  • Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581–613. doi:10.1007/s11160-007-9059-5.

    Article  Google Scholar 

  • Handisyde, N. T., Ross, L. G., Badjeck, M. C. & Allison, E. H. (2014) The effects of climate change on world aquaculture: A global perspective. Final technical report, DFID Aquaculture and fish genetics research programme. Stirling Institute of Aquaculture, Stirling, p. 151. www.aqua.stir.ac.uk/GISAP/pdfs/Climate_full.pdf.

  • Hessami, M., Gachon, P., Ouarda, T., & St-Hilaire, A. (2008). Automated regression-based statistical downscaling tool. Environmental Modelling and Software, 23, 813–834.

    Article  Google Scholar 

  • Hossain, M. A. R. (2014) Habitat and fish diversity: Bangladesh perspective, pp 1–26. In: Wahab, M.A., Shah, M.S., Hossain, M.A.R., Barman, B.K. and Hoq, M.E. (eds.), Advances in Fisheries Research in Bangladesh: I. Proc. of 5th fisheries conference and research fair 2012. 18–19 January 2012, Bangladesh agricultural research council, Dhaka, Bangladesh Fisheries Research Forum, Dhaka. p. 246.

  • Hossain, M. N. (2015). Analysis of human vulnerability to cyclones and storm surges based on influencing physical and socioeconomic factors: Evidences from coastal Bangladesh. International Journal of Disaster Risk Reduction, 13, 66–75. doi:10.1016/j.ijdrr.2015.04.003.

    Article  Google Scholar 

  • Hossain, M. N., Chowdhury, S., & Paul, S. K. (2016). Farmer level adaptation to climate change and agricultural drought: empirical evidences from the Barind region of Bangladesh. Natural Hazards, 83, 1007–1026. doi:10.1007/s11069-016-2360-7.

    Article  Google Scholar 

  • Hussner, A. (2009). Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Research, 49, 506–515. doi:10.1111/j.1365-3180.2009.00721.x.

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Pachauri, R. K. & Meyer L. A. (eds.). IPCC, Geneva, Switzerland, pp. 151.

  • IWAC. (2009). Climate change mitigation and adaptation—implications for inland waterways in England and Wales. U.K.: IWAC.

    Google Scholar 

  • Kairu, J. K. (2001). Wetland use and impact on Lake Victoria, Kenya region. Lakes and Reservoirs: Research and Management, 6, 117–125.

    Article  CAS  Google Scholar 

  • Kam, S. P., Badjeck, M. C., The, L. &Tran N. (2012) Autonomous adaptation to climate change by shrimp and catfish farmers in Vetnam’s Mekong River delta. World Fish Center, Working Paper, 24.

  • Kassenga, G. R. (1997). A descriptive assessment of the wetlands of the Lake Victoria basin in Tanzania. Resources, Conservation and Recycling, 20, 127–141.

    Article  Google Scholar 

  • Kolker, A. S., Kirwan, M. L., Goodbred, S. L., & Cochran, J. K. (2010). Global climate changes recorded in coastal wetland sediments: Empirical observations linked to theoretical predictions. Geophysical Research Letters, 37, L14706. doi:10.1029/2010GL043874.

    Article  Google Scholar 

  • Kumaran, M., Vimala, D. D., Chandrasekaran, V. S., Algappan, M., & Raja, S. (2012). Extension approach for an effective fisheries and aquaculture extension service in India. Journal of Agricultural Extension and Extension, 18(3), 247–267.

    Article  Google Scholar 

  • Kusler, J. (2005). Common questions: Wetland, climate change and carbon sequestering. USA: ASWM.

    Google Scholar 

  • Lallana, V. H., Sebastian, R. A., & Lallana, M. D. C. (1987). Evapotranspiration from Eichhornia crassipes, Pistia stratiotes, Salvinia herzogii and Azolla caroliniana during summer in Argentina. Journal of Aquatic Plant Management, 25, 48–50.

    Google Scholar 

  • Leiserowitz, A. (2006). Climate change risk perception and policy preferences: The role of affect, imagery and values. Climate Change, 77(1), 45–72.

    Article  Google Scholar 

  • Linstone, H. A., & Turoff, M. (1975). The Delphi method: Techniques and applications. Reading: Addison-Wesley. ISBN 978-0-201-04294-8.

    Google Scholar 

  • Lonsdale, W. M. (1993). Rates of spread of an invading species—Mimosa pigra in northern Australia. Journal of Ecology, 81(3), 513–521.

    Article  Google Scholar 

  • Low, T. (2012). Climate change, weeds and pests in Murray-Darling basin: Report for the Murray-Darling basin authority. Australia: Murray-Darling basin authority.

    Google Scholar 

  • Lukasiewicz, A., Finlayson, C. M., Pittock, J. (2012) Identifying low risk climate change adaptation: A case study of the Goulburn Catchment Management Authority. Goulburn Catchment Management Authority Report No. 72.

  • Makate, C., Makate, M., & Mango, N. (2017). Smallholder Farmer’s perceptions on climate change and the use of sustainable agricultural practices in the Chinyanja triangle, Southern Africa. Social Science, 6(1), 30. doi:10.3390/socsci6010030.

    Article  Google Scholar 

  • Malone, E. L., & Engle, N. L. (2011). Evaluating regional vulnerability to climate change: purposes and methods. WIREs Climate Change, 2, 462–474. doi:10.1002/wcc.116.

    Article  Google Scholar 

  • Mamun, A. A. (2007) Traditional ecological knowledge and its importance for conservation and management of freshwater fish habitats of Bangladesh. M.Sc. (Natural Resource Management) Thesis, The University of Manitoba, Canada.

  • Marcogliese, D. J. (2008). The impact of climate change on the parasites and infectious diseases of aquatic animals. Revue Scientifique et Technique, 27(2), 467–484.

    Article  CAS  Google Scholar 

  • McCormick, S. (2016). Assessing climate change vulnerability in urban America: stakeholder-driven approaches. Climatic Change, 138(3–4), 397–410.

    Article  Google Scholar 

  • Milton, S. J. (2004). Grasses as invasive alien plants in South Africa. South African Journal of Science, 100, 69–75.

    Google Scholar 

  • Mohanty, B., Mohanty, S., Sahoo, J., & Sharma, A. (2010). Climate change: Impacts on fisheries and aquaculture. In S. Simard (Ed.), Climate change and variability. InTech Europe. http://www.intechopen.com/books/climate-change-and-variability/climate-change-impacts-on-fisheries-and-aquaculture.

  • Mukherjee, N., Huge, J., Sutherland, W. J., McNeill, J., Opstal, M. V., Dahdouh-Guebas, F., et al. (2015). The Delphi technique in ecology and biological conservation: applications and guidelines. Methods in Ecology and Evolution, 6(9), 1097–1109. doi:10.1111/2041-210X.12387.

    Article  Google Scholar 

  • NATCOM-UNFCCC (2004) India’s national communication to the United Nations framework convention on climate change. Ministry of environment and forests, Government of India.

  • Ndimele, P., Kumolu-Johnson, C., & Anetekhai, M. (2011). The invasive aquatic macrophyte, water hyacinth Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae: Problems and prospects. Research Journal of Environmental Sciences, 5, 509–520.

    Article  Google Scholar 

  • Ojala, A., Kankaala, P., & Tulonen, T. (2002). Growth response of Equisetum fluviatile to elevated CO2 and temperature. Environmental and Experimental Botany, 47(2), 157–171.

    Article  Google Scholar 

  • Pathak, V., Tyagi, R. K. & Singh, B. (2014) Ecological status and production dynamics of wetlands of Uttar Pradesh. Bulletin No.131. Central Inland Capture Fisheries Institute, Barrackpore. p. 44.

  • Pittock, J., & Finlayson, M. (2011). Australia’s Murray-Darling Basin: Freshwater ecosystem conservation options in an era of climate change. Marine and Freshwater Research, 62, 232–243. doi:10.1071/MF02041.

    Article  CAS  Google Scholar 

  • Ponnusamy, K., & Swatilakshmi, P. S. (2012). Farmers’ perception of critical factors for success of indigenous shrimp feed in India. Fishery Technology, 48(1), 95–98.

    Google Scholar 

  • Powell, C. (2003). The Delphi technique: myths and realities. J Adv Nurs., 41(4), 376–382.

    Article  Google Scholar 

  • Pramova E, Florie C, Locatelli B & Hoppe M (2013) Climate change impact chains in Coastal Areas (ICCA). Final study report, 57.

  • Ramsar Convention Secretariat. (2013). The Ramsar convention manual: A guide to the convention on wetlands (Ramsar, Iran, 1971) (6th ed.). Gland: Ramsar Convention Secretariat.

    Google Scholar 

  • Roderick, M. R. (2012). Farmer perceptions and beliefs about climate change: A North Carolina Perspective. Raleigh, North Carolina: NC State Economist.

    Google Scholar 

  • Roldan, G., & Ruiz, E. (2001). Development of limnology in Colombia. In R. G. Wetzel & B. Gopal (Eds.), Limnology in developing Countries. III. International association of theoretical and applied limnology (pp. 69–119). New Delhi: International Scientific Publications.

    Google Scholar 

  • Ross, P. M., & Adam, P. (2013). Climate change and intertidal wetlands. Biology (Basel), 2(1), 445–480. doi:10.3390/biology2010445.

    Article  Google Scholar 

  • Roy, K. (2016). Secondary impacts of climate change on floodplain wetlands and their fisheries: A review with one hypothesis. National Wetlands Newsletter, 38(1), 21–25.

    Google Scholar 

  • Saha, G. S., Radheyshyam, H. K., De, H. K., Kumar, K., Chakraborty, P. P., Mahapatra, A. S., et al. (2015). Perceptions of the farmers and fishery extension officers on climate change parameters affecting aquaculture. Journal of Inland Fisheries Society of India., 47(2), 6–12.

    Google Scholar 

  • Sharma, A. P, Joshi, K. D., Naskar, M. & Das, M. K. (2015) Inland fisheries and climate change: Vulnerability and adaptation options. ICAR-CIFRI Special Publication, Policy paper No. 5. ISSN 0970-616X. http://www.ernet.cifri.in.

  • Sugunan, V. V., Vinci, G. K., Bhattacharjya, B. K. & Hassan, M. A. (2000) Ecology and fisheries of beels in West Bengal. Bulletin No. 103, Central Inland Capture Fisheries Institute, Barrackpore. p. 53.

  • Thorp, J. H., Thoms, M. C., & Delong, M. D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications, 22, 123–147.

    Article  Google Scholar 

  • Tonn, W. M. (1990). Climate change and fish communities: A conceptual framework. Transactions of the American Fisheries Society, 119, 337–352.

    Article  Google Scholar 

  • Tsai, J. S., Venne, L. S., McMurry, S. T., & Smith, L. M. (2007). Influences of land use and wetland characteristics on water loss rates and hydroperiods of playas in the southern high plains. Wetlands, 27, 683–692.

    Article  Google Scholar 

  • Udayasekhar, N., Muralidhar, M., Kumaran, M., Muniyandi, B., Umesh, N. R., Krishna, P. K. S., et al. (2012). Climate change and shrimp farming in Andhra Pradesh, India: Socio-economics and vulnerability. Energy and Environment Research., 2(2), 137–148.

    Google Scholar 

  • Uddin, M. S., Bokelmann, W., & Entsminger, J. S. (2014). Factors affecting farmer’s adaptation strategies to environmental degradation and climate change effects: A farm level study in Bangladesh. Climate, 2, 223–241. doi:10.3390/cli2040223.

    Article  Google Scholar 

  • US EPA (2008) Effects of climate change for aquatic invasive species and implications for management and research. National Center for Environmental Assessment, Washington, DC; EPA/600/R-08/014. Available from the National Technical Information Service, Springfield. http://www.epa.gov/ncea.

  • Wandji, N. D., Pouomogne, V., Nymeck, B. J., & Nouaga, R. Y. (2012). Farmer’s perception and adoption of new aquaculture technologies in the western highlands of cameroon. Tropiculturia, 30(3), 180–184.

    Google Scholar 

  • Weber, E. U. (2006). Experience based and description based perceptions of long term risk: why global does not scare us (yet). Climate Change, 77(1), 103–120.

    Article  Google Scholar 

  • Weber, E. U. (2010). What shapes perception of climate change? Climate Change, 1, 332–342.

    Google Scholar 

  • Wrona, F. J., Prowse, T. D., Reist, J. D., Hobbie, J. E., Levesque, L. M. J., Macdonald, R. W., et al. (2006). Effects of ultraviolet radiation and contaminant-related stressors on Arctic freshwater ecosystems. Ambio, 35, 388–401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support under the project NICRA of Indian Council of Agricultural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Naskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, M., Roy, K., Karnatak, G. et al. Quantifying climate change induced threats to wetland fisheries: a stakeholder-driven approach. Environ Dev Sustain 20, 2811–2830 (2018). https://doi.org/10.1007/s10668-017-0018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-0018-6

Keywords

Navigation