Skip to main content

Advertisement

Log in

Microplastic Pollution in Agricultural Soils and Abatement Measures – a Model-Based Assessment for Germany

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Microplastic pollution in soils is a recent environmental problem and the lack of knowledge about the impacts and the extent of the problem are raising questions and concerns among researchers and politicians. Using a normative simulation model, we assess the extent of microplastic pollution in German agricultural soils originating from the land application of sewage sludge and compost. We estimate the microplastic concentration in German agricultural soils, the area of polluted land, and we compare the efficiency and effectiveness of some selected abatement measures. For 2020, we estimate that microplastic concentration in agricultural soil reaches a maximum concentration of between 30 and 50 mg/kg dry weight on 2% of utilised agricultural area and a marginal concentration on 22% of utilised agricultural area. Without the implementation of abatement measures, we expect the microplastic concentration to increase two to three times by 2060. Assessing the abatement measures, we find that for sewage sludge, thermal recycling is a more efficient and effective than equipping washing machines with microplastic-filters in private households. The use of plastic detection systems in the biowaste collection process reduces the plastic content of the compost and thus the release of microplastic into the soil. Detection systems are a more efficient measure for compost than thermal recycling. Concerning sludge, the findings indicate that the German strategy of thermally recycling sewage sludge is an efficient and effective measure to reduce microplastic pollution in soils. Reducing the plastic content of collected biowaste complies with the principles of a circular economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Data is available on request.

Code Availability

Not applicable.

Notes

  1. i.e. 0.032% + 10% · 0.032% = 0.035% ~ 0.04%

  2. In May 1993 the TASi (Technische Anleitung Siedlungsabfall) prohibited the disposal of organic waste (such as sewage sludge) in landfills [46].

References

  1. Gestoso, I., Cacabelos, E., Ramalhosa, P., & Canning-Clode, J. (2019). Plasticrusts: A new potential threat in the Anthropocene’s rocky shores. Science of The Total Environment, 687, 413–415. https://doi.org/10.1016/j.scitotenv.2019.06.123

    Article  CAS  Google Scholar 

  2. Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    Article  CAS  Google Scholar 

  3. Koelmans, A. A., Besseling, E., Foekema, E., Kooi, M., Mintenig, S., Ossendorp, B. C., & Scheffer, M. (2017). Risks of plastic debris: Unravelling fact, opinion, perception, and belief. Environmental Science & Technology, 51(20), 11513–11519. https://doi.org/10.1021/acs.est.7b02219

    Article  CAS  Google Scholar 

  4. Zubris, K. A. V., & Richards, B. K. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138(2), 201–211. https://doi.org/10.1016/j.envpol.2005.04.013

    Article  CAS  Google Scholar 

  5. Selonen, S., Dolar, A., Jemec Kokalj, A., Skalar, T., Parramon Dolcet, L., Hurley, R., & van Gestel, C. A. M. (2020). Exploring the impacts of plastics in soil – The effects of polyester textile fibers on soil invertebrates. Science of The Total Environment, 700, 134451. https://doi.org/10.1016/j.scitotenv.2019.134451

    Article  CAS  Google Scholar 

  6. de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416. https://doi.org/10.1111/gcb.14020

    Article  Google Scholar 

  7. Hurley, R. R., & Nizzetto, L. (2018). Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6–11. https://doi.org/10.1016/j.coesh.2017.10.006

    Article  Google Scholar 

  8. Nizzetto, L., Bussi, G., Futter, M. N., Butterfield, D., & Whitehead, P. G. (2016). A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environmental Science: Processes & Impacts, 18(8), 1050–1059. https://doi.org/10.1039/C6EM00206D

    Article  CAS  Google Scholar 

  9. Rillig, M. C., Ingraffia, R., & de Souza Machado, A. A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01805

  10. Büks, F., Loes van Schaik, N., & Kaupenjohann, M. (2020). What do we know about how the terrestrial multicellular soil fauna reacts to microplastic? The Soil, 6(2), 245–267. https://doi.org/10.5194/soil-6-245-2020

    Article  Google Scholar 

  11. Rillig, M. C., Lehmann, A., Ryo, M., & Bergmann, J. (2019). Shaping up: Toward considering the shape and form of pollutants. Environmental Science & Technology, 53(14), 7925–7926. https://doi.org/10.1021/acs.est.9b03520

    Article  CAS  Google Scholar 

  12. Ng, E.-L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H.-W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

    Article  CAS  Google Scholar 

  13. Henseler, M., Brandes, E., & Kreins, P. (2020). Microplastics in agricultural soils: A new challenge not only for agro-environmental policy? Journal of Applied Business and Economics, 22(7). https://doi.org/10.33423/jabe.v22i7.3250

  14. Brodhagen, M., Goldberger, J. R., Hayes, D. G., Inglis, D. A., Marsh, T. L., & Miles, C. (2017). Policy considerations for limiting unintended residual plastic in agricultural soils. Environmental Science & Policy, 69, 81–84. https://doi.org/10.1016/j.envsci.2016.12.014

    Article  Google Scholar 

  15. Lehmann, A., Fitschen, K., & Rillig, M. C. (2019). Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems, 3(1), 21. https://doi.org/10.3390/soilsystems3010021

    Article  CAS  Google Scholar 

  16. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  Google Scholar 

  17. Shi, J., Sanganyado, E., Wang, L., Li, P., Li, X., & Liu, W. (2020). Organic pollutants in sedimentary microplastics from eastern Guangdong: Spatial distribution and source identification. Ecotoxicology and Environmental Safety, 193, 110356. https://doi.org/10.1016/j.ecoenv.2020.110356

    Article  CAS  Google Scholar 

  18. Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G., & Zhang, P. (2019). Microplastics as contaminants in the soil environment: A mini-review. Science of The Total Environment, 691, 848–857. https://doi.org/10.1016/j.scitotenv.2019.07.209

    Article  CAS  Google Scholar 

  19. Bakir, A., Rowland, S. J., & Thompson, R. C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environmental Pollution, 185, 16–23. https://doi.org/10.1016/j.envpol.2013.10.007

    Article  CAS  Google Scholar 

  20. Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82. https://doi.org/10.1016/j.watres.2015.02.012

    Article  CAS  Google Scholar 

  21. Lusher, A. L., Hollman, P. C. H., & Mendoza-Hill, J. J. (2017). Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. Rome, Italy: FAO. Retrieved February 21, 2022, from https://www.fao.org/documents/card/fr/c/59bfa1fc-0875-4216-bd33-55b6003cfad8/

  22. Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of The Total Environment, 671, 411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368

    Article  CAS  Google Scholar 

  23. Kay, P., Hiscoe, R., Moberley, I., Bajic, L., & McKenna, N. (2018). Wastewater treatment plants as a source of microplastics in river catchments. Environmental Science and Pollution Research, 25(20), 20264–20267. https://doi.org/10.1007/s11356-018-2070-7

    Article  CAS  Google Scholar 

  24. Wijesekara, H., Bolan, N. S., Bradney, L., Obadamudalige, N., Seshadri, B., Kunhikrishnan, A., & Vithanage, M. (2018). Trace element dynamics of biosolids-derived microbeads. Chemosphere, 199, 331–339. https://doi.org/10.1016/j.chemosphere.2018.01.166

    Article  CAS  Google Scholar 

  25. Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of The Total Environment, 612, 422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  Google Scholar 

  26. Weithmann, N., Möller, J. N., Löder, M. G. J., Piehl, S., Laforsch, C., & Freitag, R. (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4), eaap8060. https://doi.org/10.1126/sciadv.aap8060

  27. Brennholt, N., Heß, M., & Reifferscheid, G. (2018). Freshwater microplastics: Challenges for regulation and management. In M. Wagner & S. Lambert (Eds.), Freshwater Microplastics - The Handbook of Environmental Chemistry (Vol. 58). Cham: Springer. https://doi.org/10.1007/978-3-319-61615-5

    Chapter  Google Scholar 

  28. Möller, J. N., Löder, M. G. J., & Laforsch, C. (2020). Finding microplastics in soils: A review of analytical methods. Environmental Science & Technology, 54(4), 2078–2090. https://doi.org/10.1021/acs.est.9b04618

    Article  CAS  Google Scholar 

  29. Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: What we know and what we need to know. Environmental Sciences Europe, 26(1), 12. https://doi.org/10.1186/s12302-014-0012-7

    Article  Google Scholar 

  30. SAPEA. (2019). A scientific perspective on microplastics in nature and society. Science Advice for Policy by European Academies (SAPEA). https://doi.org/10.26356/microplastics

    Book  Google Scholar 

  31. Bertling, J., Bertling, R., & Hammann, L. (2018). Kunststoffe in der Umwelt: Mikro- und Makroplastik. Ursachen, Mengen, Umweltschicksale, Wirkungen, Lösungsansätze, Empfehlungen. https://doi.org/10.24406/UMSICHT-N-497117

  32. Kawecki, D., & Nowack, B. (2019). Polymer-specific modeling of the environmental emissions of seven commodity plastics as macro- and microplastics. Environmental Science & Technology, 53(16), 9664–9676. https://doi.org/10.1021/acs.est.9b02900

    Article  CAS  Google Scholar 

  33. Conversio. (2020). Vom Land ins Meer – Modell zur Erfassung landbasierter Kunststoffabfälle. Conversio – Market and strategy. Retrieved February 21, 2022, from https://www.bkv-gmbh.de/studien/marine-litter-bericht-vom-land-ins-meer-modell-zur-erfassung-landbasierter-kunststoffabf%C3%A4lle-conversio.html

  34. Brandes, E., Henseler, M., & Kreins, P. (2021). Identifying hot-spots for microplastic contamination in agricultural soils–Aspatial modelling approach for Germany. Environmental Research Letters, 16(10), 104041. https://doi.org/10.1088/1748-9326/ac21e6

    Article  Google Scholar 

  35. Crossman, J., Hurley, R. R., Futter, M., & Nizzetto, L. (2020). Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of The Total Environment, 724, 138334. https://doi.org/10.1016/j.scitotenv.2020.138334

    Article  CAS  Google Scholar 

  36. Okoffo, E. D., Tscharke, B. J., O’Brien, J. W., O’Brien, S., Ribeiro, F., Burrows, S. D., & Thomas, K. V. (2020). Release of plastics to Australian land from biosolids end-use. Environmental Science & Technology, 54(23), 15132–15141. https://doi.org/10.1021/acs.est.0c05867

    Article  CAS  Google Scholar 

  37. Kehres, B. (2019). Kunststoffe in Kompost und Gärprodukten Herkunft - Bedeutung - Vermeidung. BGK Information. Bundesgütegemeinschaft Kompost (BGK). Retrieved February 21, 2022, from https://www.kompost.de

  38. BGK. (2018). Kunststoffe in Kompost und Gärprodukten. Humuswirtschaft und Kompost Aktuell, (Q4 2018).

  39. AbfKlärV. (2017). Verordnung über die Verwertung von Klärschlamm, Klärschlammgemisch und Klärschlammkompost (Klärschlammverordnung - AbfKlärV). Federal Ministry of Justice. Retrieved February 21, 2022, from https://www.gesetze-im-internet.de/abfkl_rv_2017/BJNR346510017.html

  40. BioAbfV. (2017). Verordnung über die Verwertung von Bioabfällen auf landwirtschaftlich, forstwirtschaftlich und gärtnerisch genutzten Böden (Bioabfallverordnung - BioAbfV). Federal Ministry of Justice. Retrieved February 21, 2022, from https://www.gesetze-im-internet.de/bioabfv/

  41. BMEL. (2019). Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten (2019): Verbleib von Kompost und Klärschlamm. Federal Minister of Food and Agriculture (BMEL). Retrieved February 21, 2022, from https://bmel-statistik.de/fileadmin/daten/SJT-3060620-0000.xlsx

  42. Statistisches Bundesamt and DWA-Arbeitsgruppe KEK-1.2 Statistik. (2014). Abwasser und Klärschlamm in Deutschland – Statistische Betrachtungen Teil 1: Abwasserbehandlung. Korrespondenz Abwasser, Abfall, 61(12). Retrieved February 21, 2022, from https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Wasserwirtschaft/Publikationen/Downloads-Wasserwirtschaft/abwasser-klaerschlamm-5322102159004.pdf?__blob=publicationFile&v=5

  43. Statistisches Bundesamt and DWA-Arbeitsgruppe KEK-1.2 Statistik. (2015). Abwasser und Klärschlamm in Deutschland – statistische Betrachtungen Teil 2: Klärschlamm, Klärgas, Rechen und Sandfanggut. Korrespondenz Abwasser, Abfall, 62(1). Retrieved February 21, 2022, from https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Wasserwirtschaft/Publikationen/Downloads-Wasserwirtschaft/abwasser-klaerschlamm-5322102159004.pdf?__blob=publicationFile&v=5

  44. UBA. (2020). Bioabfälle-Data-Set: An Bioabfallbehandlungsanlagen angelieferte biologisch abbaubare Abfälle. Umweltbundesamt (UBA). Retrieved February 21, 2022, from https://www.umweltbundesamt.de/bild/an-bioabfallbehandlungsanlagen-angelieferte

  45. Gallenkemper, B., & Dohmann, M. (1994). Klärschlamm-Entsorgung. Economica-Verlag.

    Google Scholar 

  46. TASi. (1993). Technische Anleitung zur Verwertung, Behandlung und sonstigen Entsorgung von Siedlungsabfällen. Umwelt-Online. Retrieved February 21, 2022, from https://www.umwelt-online.de/recht/abfall/ta_siedl/taa_ges.htm

  47. Franck, J., & Schröder, L. (2015). Zukunftsfähigkeit kleiner Klärschlammverbrennungsanlagen. In J. Thomé-Kozmiensk, & M. Beckmann (Eds.), Energie aus Abfall (pp. 457–476). TK Verlag Karl Thomé-Kozmiensky. Retrieved February 21, 2022, from https://www.vivis.de/2015/12/zukunftsfaehigkeit-kleiner-klaerschlammverbrennungsanlagen/8862/

  48. KrWG. (2012). Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen: Abfallhierarchie (KrWG). Federal Ministry of Justice. Retrieved February 21, 2022, from https://www.gesetze-im-internet.de/krwg/__6.html

  49. Aqua Consult Baltic. (2015). Ausarbeitung der Lösungen zur regionalen Klärschlammaufbereitung sowie Ausarbeitung der Kriterien zum Ende der Abfalleigenschaft von Klärschlamm. Aqua Consult Baltic. Retrieved February 21, 2022, from https://ec.europa.eu/growth/tools-databases/tris/hr/index.cfm/search/?trisaction=search.detail&year=2017&num=154&iLang=DE

  50. LfU. (2020). Klärschlamm – Entsorgungssituation. Bayerisches Landesamt für Umwelt (LfU). Retrieved February 21, 2022, from https://www.lfu.bayern.de/abfall/klaerschlamm/index.htm

  51. StaLA-BW. (2021). Landwirtschaftliche Klärschlammverwertung ist die Ausnahme -- Baden-Württemberg: In der Mehrzahl der Kreise wurde der gesamte Klärschlamm verbrannt. Statistischen Landesamt Baden Württemberg (StaLa-BW). Retrieved February 21, 2022, from http://www.statistik-bw.de/Presse/Pressemitteilungen/2021008

  52. UM-BW. (2021). Entsorgung – Klärschlämme. Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg (UM-BW). Retrieved February 21, 2022, from https://um.baden-wuerttemberg.de/de/umwelt-natur/abfall-und-kreislaufwirtschaft/abfallstroeme/abfallarten-und-ihre-entsorgung/klaerschlaemme/

  53. Roskosch, A., & Heidecke, P. (2018). Klärschlammentsorgung in der Bundesrepublik Deutschland. Umweltbundesamt (UBA). Retrieved February 21, 2022, from https://www.umweltbundesamt.de/publikationen/klaerschlammentsorgung-in-der-bundesrepublik

  54. Herrmann, T., Weiss, V., Bannick, C., Ehlers, K., & Claussen, U. (2017). Bioabfallkomposte und -gärreste in der Landwirtschaft. Umwelt Bundesamt (UBA). Retrieved February 21, 2022, from https://www.umweltbundesamt.de/publikationen/bioabfallkomposte-gaerreste-in-der-landwirtschaft

  55. Ministère de la Transition écologique et solidaire. (2020). Lutte contre la pollution plastique : Brune Poirson reçoit les fabricants de machines à laver. Ministère de la Transition écologique et solidaire. Retrieved February 21, 2022, from https://www.ecologique-solidaire.gouv.fr/lutte-contre-pollution-plastique-brune-poirson-recoit-fabricants-machines-laver

  56. European Union. (2012). Consolidated version of the treaty on the functioning of the European Union (TFEU). Official Journal of the European Union. Retrieved February 21, 2022, from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012E/TXT&from=EN

  57. European Union. (2020). Circular economy action plan. for a cleaner and more competitive. Europe. European Commission. Retrieved February 21, 2022, from https://ec.europa.eu/environment/circular-economy/pdf/new_circular_economy_action_plan.pdf

  58. VAK. (2021). Refuse collection vehicles - Environment and safety details make the difference. Verband der Arbeitsgeräte- und Kommunalfahrzeug-Industrie e.V. (VAK). Retrieved February 21, 2022, from https://www.vak-ev.de/en/members/refuse-collection-vehicles

  59. European Commission. (2019). The European green deal. European Commission. Retrieved February 21, 2022, from https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1596443911913&uri=CELEX:52019DC0640#document2

  60. European Union. (2021). New soil strategy - Healthy soil for a healthy life. European Commission. Retrieved February 21, 2022, from https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12634-Healthy-soils-new-EU-soil-strategy_en

  61. Hagens, N. J. (2020). Economics for the future – Beyond the superorganism. Ecological Economics, 169, 106520. https://doi.org/10.1016/j.ecolecon.2019.106520

    Article  Google Scholar 

  62. Melgar-Melgar, R. E., & Hall, C. A. S. (2020). Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems. Ecological Economics, 169, 106567. https://doi.org/10.1016/j.ecolecon.2019.106567

    Article  Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers and the editor whose comments and suggestions helped improve this article.

Funding

Partial financial support was received from the German Federal Ministry of Education and Research (BMBF) within the project PLAWES (Grant Number 03F0789G).

Author information

Authors and Affiliations

Authors

Contributions

Martin Henseler: Conceptualisation, data curation, formal analysis, methodology, software, validation, visualisation, writing – original draft. Micheal B. Gallagher: Writing – review & editing. Peter Kreins: Funding acquisition, project administration.

Corresponding author

Correspondence to Martin Henseler.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henseler, M., Gallagher, M.B. & Kreins, P. Microplastic Pollution in Agricultural Soils and Abatement Measures – a Model-Based Assessment for Germany. Environ Model Assess 27, 553–569 (2022). https://doi.org/10.1007/s10666-022-09826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09826-5

Keywords

Navigation