Skip to main content

Advertisement

Log in

Land Sharing vs Land Sparing to Conserve Biodiversity: How Agricultural Markets Make the Difference

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this paper, we model the supply and demand for agricultural goods and assess and compare how welfare, land use, and biodiversity are affected under intensive and extensive farming systems at market equilibrium instead of at exogenous production levels. As long as demand is responsive to price, and intensive farming has lower production costs, there exists a rebound effect (larger market size) of intensive farming. Intensive farming is then less beneficial to biodiversity than extensive farming is, except when there is a high degree of convexity between biodiversity and yield. On the other hand, extensive farming leads to higher prices and smaller quantities for consumers. Depending on parameter values, it may increase or decrease agricultural producer profits. Implementing “active” land sparing by zoning some land for agriculture and other land for conservation could overcome the rebound effect of intensive farming, but we show that farmers have then incentives to encroach on land zoned for conservation, with higher incentives under intensive farming. We also show that the primary effect of the higher prices associated with extensive farming is a reduction of animal feed production, which has a higher price elasticity of demand, whereas less of an effect is observed on plant-based food production and almost no effect is observed on biofuel production if there are mandatory blending policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Assuming a positive level of biodiversity on intensively farmed land, such as in Green et al. [11], does not change the results of the model.

  2. This function indicates that the marginal cost of producing the quantity q of the agricultural good with technology k is equal to s k (q). Our model is consistent with the assumption that production is conducted by a continuum of perfectly competitive farmers with different agricultural production costs. Then, the marginal farmer who enters this production system, which is characterized by the highest cost of production, has a cost equal to s k (q). The production level q is obtained when the market price p is equal to s k (q); therefore, all producers receive a positive surplus from their production except the marginal farmer, who produces with a zero surplus.

  3. The price elasticity of supply is ε sk  = (p / q) ∂q / ∂p = (p / q) / (∂s k (q) / ∂q) = (a k q − b) / (a k q); the value is lower than 1 if and only if b > 0.

  4. Because y e ∈ (0, 1) and α > 0, we have y e α < 1. Land use decreases when (g + a e ) y e  > g + a i , which implies (g + a e ) y e  > (g + a i ) y e α, the condition under which biodiversity increases.

  5. Because a e  > a i and y e  < 1, we have ln((a e  + g) / (a i  + g)) / ln (1 / y e )) > 0, and therefore,  < 1.

  6. In the case where the relation between biodiversity and yield is convex, because y e ∈ (0, 1) and α ∈ [0, 1), we have y e α−1 > 1, with y e α−1 → 1 when α → 1 and y e α1 = 1 / y e when α = 0.

  7. Analogous to Karagiannis and Furtan [44], who consider an infinitesimal variation in the slope of the supply curve, it is possible to interpret only a necessary condition for an increase in producer surplus. This necessary condition is that the section between the square brackets of the left-hand term in the inequality presented in proposition 1 must be positive, which is the case if and only if a i a e  > g 2 (the product of the two slopes of the inverse supply is higher than the square of the inverse demand slope).

  8. A minimum level of biodiversity B c introduces a cap on land use l kc with farming system k ∈ {i, e}. From Eq. (6), this cap is defined by l kc  = (1 − B c ) y k −α; from Eq. (3), it results in a production cap q kc  = (1 − B c ) y k 1−α. The price equilibrium is at the intersection of the production cap and the inverse demand curve (7), p kc  = c − g q kc , whereas the marginal cost of production is at the intersection of the production cap and the inverse supply curve (2), mc kc  = a k q kc  − b. Therefore, the price-cost difference is p kc  − mc kc  = b + c − (a k  + g) q kc ; based on the expression of q kc , this difference yields Eq. (11).

  9. For each product, the demand function is D k(p) = c k  / g k  − p / g k . Therefore, the total demand is D(p) = (∑ k c k  / g k ) − (∑ k 1 / g k ) p, from which we deduce the expression of the total inverse demand in Eq. (13).

  10. This ratio is a world average and excludes biomass that is not edible for humans but edible for animals, such as pastures, fodder crops, and crop residues.

  11. In poor countries, there is a significantly higher use of non-food biomass for feed (such as bush or crop/food residues) because arable land is mainly cultivated for food. Milk and meat yields are lower per animal, although these animals provide other key services (traction, soil fertilization, fuel, or building material with animal feces) [20].

References

  1. Butchart, S. H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P., Almond, R. E., et al. (2010). Global biodiversity: indicators of recent declines. Science, 328(5982), 1164–1168.

    Article  CAS  Google Scholar 

  2. Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., et al. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471(7336), 51–57.

    Article  CAS  Google Scholar 

  3. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342.

    Article  CAS  Google Scholar 

  4. Pereira, H. M., Navarro, L. M., & Martins, I. S. (2012). Global biodiversity change: the bad, the good, and the unknown. Annual Review of Environment and Resources, 37(1), 25–50.

    Article  Google Scholar 

  5. Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., et al. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50.

    Article  CAS  Google Scholar 

  6. Donald, P. F., Gree, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society of London B: Biological Sciences, 268(1462), 25–29.

    Article  Google Scholar 

  7. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. In ESA working paper 12–03. Rome: FAO.

    Google Scholar 

  8. Fritz, S., See, L., van der Velde, M., Nalepa, R. A., Perger, C., Schill, C., et al. (2013). Downgrading recent estimates of land available for biofuel production. Environmental Science and Technology, 47(3), 1688–1694.

    CAS  Google Scholar 

  9. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67.

    Article  CAS  Google Scholar 

  10. Isbell, F., Tilman, D., Polasky, S., & Loreau, M. (2015). The biodiversity-dependent ecosystem service debt. Ecology Letters, 18(2), 119–134.

    Article  Google Scholar 

  11. Green, R. E., Cornell, S. J., Scharlemann, J. P., & Balmford, A. (2005). Farming and the fate of wild nature. Science, 307(5709), 550–555.

    Article  CAS  Google Scholar 

  12. Borlaug, N. E. (1987). Making institutions work: a scientists viewpoint. College Station, TX: Texas A & M University Press.

    Google Scholar 

  13. Goklany, I. M., & Sprague, M. W. (1992). Sustaining development and biodiversity: productivity, efficiency and conservation. Washington DC: Cato Institute.

    Google Scholar 

  14. Waggoner, P. E. (1996). How much land can ten billion people spare for nature? Daedalus, 125, 73–93.

    Google Scholar 

  15. Avery, D. T. (1997). Saving nature’s legacy through better farming. Issues in Science and Technology, 14(1), 59.

    Google Scholar 

  16. Borlaug, N. E. (2002). Feeding a world of 10 billion people: the miracle ahead. Vitro Cellular and Developmental Biology-Plant, 38(2), 221–228.

    Article  Google Scholar 

  17. Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 333(6047), 1289–1291.

    Article  CAS  Google Scholar 

  18. Fischer, J., Abson, D. J., Butsic, V., Chappell, M. J., Ekroos, J., Hanspach, J., et al. (2014). Land sparing versus land sharing: moving forward. Conservation Letters, 7(3), 149–157.

    Article  Google Scholar 

  19. Fischer, J., Batary, P., Bawa, K. S., Brussaard, L., Chappell, M. J., Clough, Y., et al. (2011). Conservation: limits of land sparing. Science, 334(6056), 593.

    Article  CAS  Google Scholar 

  20. Paillard, S., Tréyer, S., & Dorin, B. (Eds.) (2014). Agrimonde—scenarios and challenges for feeding the world in 2050. Versailles: Quae.

    Google Scholar 

  21. Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., et al. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53–59.

    Article  Google Scholar 

  22. Matson, P. A., & Vitousek, P. M. (2006). Agricultural intensification: will land spared from farming be land spared for nature? Conservation Biology, 20(3), 709–710.

    Article  Google Scholar 

  23. Vandermeer, J., & Perfecto, I. (2007). The agricultural matrix and a future paradigm for conservation. Conservation Biology, 21(1), 274–277.

    Article  Google Scholar 

  24. Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 5786–5791.

    Article  CAS  Google Scholar 

  25. Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3465–3472.

    Article  CAS  Google Scholar 

  26. Ewers, R. M., Scharlemann, J. P. W., Balmford, A., & Green, R. E. (2009). Do increases in agricultural yield spare land for nature? Global Change Biology, 15(7), 1716–1726.

    Article  Google Scholar 

  27. Phalan, B., Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2011). Minimizing the harm to biodiversity of producing more food globally. Food Policy, 36, S62–S71.

    Article  Google Scholar 

  28. Balmford, A., Green, R., & Phalan, B. (2012). What conservationists need to know about farming. Proceedings of the Royal Society. Series B: Biological Sciences, 279(1739), 2714–2724.

    Google Scholar 

  29. Phalan, B., Green, R. E., Dicks, L. V., Dotta, G., Feniuk, C., Lamb, A., et al. (2016). How can higher-yield farming help to spare nature? Science, 351(6272), 450–451.

    Article  CAS  Google Scholar 

  30. Deguines, N., Jono, C., Baude, M., Henry, M., Julliard, R., & Fontaine, C. (2014). Large-scale trade-off between agricultural intensification and crop pollination services. Frontiers in Ecology and the Environment, 12(4), 212–217.

    Article  Google Scholar 

  31. Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A., & Harder, L. D. (2011). Global growth and stability of agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5909–5914.

    Article  CAS  Google Scholar 

  32. Garibaldi, L. A., Carvalheiro, L. G., Vaissière, B. E., Gemmill-Herren, B., Hipólito, J., Freitas, B. M., et al. (2016). Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 351(6271), 388–391.

    Article  CAS  Google Scholar 

  33. Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 15221.

    Article  Google Scholar 

  34. Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T. C., Anshary, A., et al. (2011). Combining high biodiversity with high yields in tropical agroforests. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8311–8316.

    Article  CAS  Google Scholar 

  35. Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 74(1–3), 19–31.

    Article  Google Scholar 

  36. Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution, 28(4), 230–238.

    Article  Google Scholar 

  37. Griffon, M. (2013). Qu’est-ce que l’agriculture écologiquement intensive? Matière à débattre et décider. Versailles: Quae.

    Google Scholar 

  38. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.

    Article  CAS  Google Scholar 

  39. Hart, R., Brady, M., & Olsson, O. (2014). Joint production of food and wildlife: uniform measures or nature oases? Environmental and Resource Economics, 59(2), 187–205.

    Article  Google Scholar 

  40. Hertel, T. W., Ramankutty, N., & Baldos, U. L. (2014). Global market integration increases likelihood that a future African green revolution could increase crop land use and CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13799–13804.

    Article  CAS  Google Scholar 

  41. Martinet, V. (2014). The economics of the food versus biodiversity debate. Ljubljana: Paper prepared for presentation at the EAAE 2014 Congress, Agri-Food and Rural Innovations for healthier societies August 26-29.

    Google Scholar 

  42. Meunier, G. (2014). Land-sparing vs land-sharing with incomplete policies. INRA ALISS Working Paper 2014–05.

  43. Seufert, V., Ramankutty, N., & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485(7397), 229–232.

    Article  CAS  Google Scholar 

  44. Ponisio, L. C., M’Gonigle, L. K., Mace, K. C., Palomino, J., de Valpine, P., & Kremen, C. (2015). Diversification practices reduce organic to conventional yield gap. Proceedings of the Royal Society of London B: Biological Sciences, 282(1799), 20141396.

    Article  Google Scholar 

  45. Karagiannis, G., & Furtan, W. H. (2002). The effects of supply shifts on producers’ surplus: the case of inelastic linear supply curves. Agricultural Economics Review, 3, 5–11.

    Google Scholar 

  46. Willer, H., Lernoud, J. (2016). The world of organic agriculture: statistics and emerging trends 2016. Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM – Organics International.

  47. Crowder, D. W., & Reganold, J. P. (2015). Financial competitiveness of organic agriculture on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7611–7616.

    Article  CAS  Google Scholar 

  48. Nemes, N. (2009). Comparative analysis of organic and non-organic farming systems: a critical assessment of farm profitability. Natural resources management and environment department. Rome: FAO.

    Google Scholar 

  49. Kuminoff, N. V., & Wossink, A. (2010). Why isn’t more US farmland organic? Journal of Agricultural Economics, 61(2), 240–258.

    Article  Google Scholar 

  50. McBride, W.D., Greene, C., Foreman, L., and Ali, M. (2015). The profit potential of certified organic field crop production. U.S. Department of Agriculture, Economic Research Service, ERR-188, July.

  51. Vanloqueren, G., & Baret, P. V. (2008). Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural ‘lock-in’ case study. Ecological Economics, 66(2–3), 436–446.

    Article  Google Scholar 

  52. Vanloqueren, G., & Baret, P. V. (2009). How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Research Policy, 38(6), 971–983.

    Article  Google Scholar 

  53. Dorin, B., & Jullien, T. (Eds.) (2004). Agricultural incentives in India. Past trends and prospective paths towards sustainable development. New Delhi: Manohar.

    Google Scholar 

  54. Bourguet, D., & Guillemaud, T. (2016). The hidden and external costs of pesticide use. Sustainable Agriculture Reviews, 19, 35–120.

    Article  Google Scholar 

  55. Sutton, M. A. (2011). In C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, et al. (Eds.), The European nitrogen assessment. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  56. USDA ERS (United States Department of Agriculture, Economic Research Service). (2015). Commodity and food elasticities. http://www.ers.usda.gov/data-products/commodity-and-food-elasticities/about.aspx. Accessed 3 Aug 2015.

  57. FAPRI (Food and Agricultural Policy Research Institute). (2015). FAPRI elasticity database. http://www.fapri.iastate.edu/tools/elasticity.aspx. Accessed 3 Aug 2015.

  58. Roberts, M. J., & Schlenker, W. (2013). Identifying supply and demand elasticities of agricultural commodities: implications for the US ethanol mandate. American Economic Review, 103(6), 2265–2295.

    Article  Google Scholar 

  59. Phelps, J., Carrasco, L. R., Webb, E. L., Koh, L. P., & Pascual, U. (2013). Agricultural intensification escalates future conservation costs. Proceedings of the National Academy of Sciences of the United States of America, 110(19), 7601–7606.

    Article  CAS  Google Scholar 

  60. HLPE (High Level Panel of Experts) (2013). Biofuels and food security. Rome: A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security.

    Google Scholar 

  61. De Gorter, H., & Just, D. R. (2009). The economics of a blend mandate for biofuels. American Journal of Agricultural Economics, 91(3), 731–750.

    Article  Google Scholar 

  62. Angelsen, A. (2010). Policies for reduced deforestation and their impact on agricultural production. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 19639–19644.

    Article  CAS  Google Scholar 

  63. Krausmann, F., Erb, K. H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., et al. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10324–10329.

    Article  CAS  Google Scholar 

  64. Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518–522.

    Article  CAS  Google Scholar 

  65. Dorin, B., Hourcade, J. C., & Benoit-Cattin, M. (2013). A world without farmers? The Lewis path revisited. Nogent-sur-Marne: CIRED.WP 47-2013

    Google Scholar 

  66. ten Brink, P. (Ed.) (2011). TEEB: the economics of ecosystems and biodiversity in national and international policy making. London: Earthscan Publishing House.

    Google Scholar 

  67. Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A., & D’Odorico, P. (2015). Resilience and reactivity of global food security. Proceedings of the National Academy of Sciences of the United States of America, 112(22), 6902–6907.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank two anonymous referees as well as Guy Meunier for their helpful comments. Financial support was granted by the French National Research Agency, project ANR-11-ALID-002-01 ‘Offrir et Consommer une Alimentation Durable’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Desquilbet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desquilbet, M., Dorin, B. & Couvet, D. Land Sharing vs Land Sparing to Conserve Biodiversity: How Agricultural Markets Make the Difference. Environ Model Assess 22, 185–200 (2017). https://doi.org/10.1007/s10666-016-9531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9531-5

Keywords

Navigation