Skip to main content
Log in

Persistence Parameter: a Reliable Measurement for Behavioral Responses of Medaka (Oryzias latipes) to Environmental Stress

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Online monitoring systems provided a significant evidence for feasibility of the stepwise behavioral response model in detecting the effects of organophosphorus pesticides on movements of medaka (Oryzias latipes), being able to determine the state of indicator organisms, “no effect,” “stimulation,” “acclimation,” “adjustment (readjustment),” and “toxic effect.” Though the stepwise behavioral response model postulated that an organism displays a time-dependent sequence of compensatory stepwise behavioral response during exposure to pollutants above their respective thresholds of resistance, it was still a conceptual model based on tendency only in analysis. In this study, the phenomenon of bacterial persistence was used to interpret the relationship between the stepwise behavioral response model and the environmental stress caused by both exposure time and different treatments. Quantitative measurements of the stepwise behavioral response model led to a simple mathematical description of the threshold switch, which evaluated the effects of environmental stress on behavioral responses to decide the tendency. The adjustment ability correlated to “persisters (p)” is very important for test individuals to overcome the “threshold” from the outside environmental stress. The computational modeling results suggested that “persister (p),” as described in the general equations of bacterial persistence model in changing environments, illustrated behavior acclimation and adjustment (or readjustment) clearly. Consequently, the persistence parameter, p, was critical in addressing for medaka to be adapted to fluctuating environments under different environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Azizullah, A., Richter, P., & Häder, D. P. (2011). Comparative toxicity of the pesticides carbofuran and malathion to the freshwater flagellate Euglena gracilis. Ecotoxicology, 20(6), 1442–1454.

  2. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  CAS  Google Scholar 

  3. Barata, C., Baird, D. J., & Markich, S. J. (1999). Comparing metal toxicity among Daphnia magna clones: an approach using concentration-response-time surfaces. Archives of Environmental Contamination and Toxicology, 37, 326–331.

    Article  CAS  Google Scholar 

  4. Beitinger, T. (1990). Behavioral reactions for the assessment of stress in fishes. Journal of Great Lakes Research, 16, 495–528.

    Article  CAS  Google Scholar 

  5. Bigger, J. W. (1944). The bactericidal action of penicillin on Staphylococcus pyogenes. Irish Journal of Medical Science, 227, 553–568.

    Article  Google Scholar 

  6. Bigger, J.W. (1944b). Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet, 2, 497–500.

  7. Billoir, E., Alexandre, R. R. P., & Charles, S. (2007). Integrating the lethal and sublethal effects of toxic compounds into the population dynamics of Daphnia magna: a combination of the DEBtox and matrix population models. Ecological Modelling, 203, 204–214.

    Article  CAS  Google Scholar 

  8. Bracy, O. L., Doyle, R. S., Kennedy, M., McNally, S.M., Weed, J. D., & Thorne, B. M. (1979). Effects of methomyl and ethanol on behavior. In The Sprague-Dawley Rat. Pharmacology Biochemistry and Behavior, 10(1), 21–25.

  9. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. G. (1984). Classification and regression trees. Belmont: Wadsworth International Group.

    Google Scholar 

  10. Cho, E., & Chon, T. (2004). Application of wavelet analysis to ecological data. Ecological Informatics, 2006, 1(3), 229–233.

    Article  Google Scholar 

  11. Chon, T., Park, Y. S., & Ross, M. H. (1998). Activity of German cockroach, Blattella germanica (L.) (Orthoptera: Blattellidae), at different microhabitats in semi-natural conditions when treated with sublethal doses of pesticides. Asia-Pacific Entomology, 1, 77–83.

    Article  Google Scholar 

  12. Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685–691.

    Article  CAS  Google Scholar 

  13. Coffin, M. R. S., Drolet, D., Hamilton, D. J., & Barbeau, M. A. (2008). Effect of immersion at low tide on distribution and movement of the mud snail, Ilyanassa obsoleta (Say), in the upper Bay of Fundy, eastern Canada. Journal of Experimental Marine Biology and Ecology, 364, 110–115.

    Article  Google Scholar 

  14. Farr, A. J., Chabot, C. C. T., & Douglas, H. (1995). Behavioral avoidance of fluoranthene by fathead minnows (Pimephales promelas). Neurotoxicology and Teratology, 17, 265–271.

    Article  CAS  Google Scholar 

  15. Gefen, O., & Balaban, N. Q. (2009). The importance of being persistent: heterogeneityof bacterial populations underantibiotic stress. FEMS Microbiology Reviews, 33, 704–717.

    Article  CAS  Google Scholar 

  16. Gray, M. A., Teather, K. L., & Metcalfe, C. D. (1999). Reproductive success and behavior of Japanese medaka (Oryzias latipes) exposed to 4-tera-octylphenol. Environmental Toxicology and Chemistry, 18, 2587–2594.

    CAS  Google Scholar 

  17. Guilhermino, L., Diamantino, T., Silva, M. C., & Soares, A. M. V. M. (2000). Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity. Ecotoxicology and Environmental Safety, 46, 357–362.

    Article  CAS  Google Scholar 

  18. Hanazato, T., & Fueki, K. (2001). Fish-induced life-history shifts in the cladocerans Daphnia and Simocephalus: are they positive or negative responses. Journal of Plankton Research, 23(9), 945–951.

  19. Hanson, M. L., & Solomon, K. R. (2002). New technique for estimating thresholds of toxicity in ecological risk assessment. Environmental Science and Technology, 36, 3257–3264.

    Article  CAS  Google Scholar 

  20. Harrison, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5, 928–938.

    Article  CAS  Google Scholar 

  21. Harrison, J. J., Turner, R. J., & Ceri, H. (2005). Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environmental Microbiology, 7, 981–994.

    Article  CAS  Google Scholar 

  22. Hobby, G. L., Meyer, K., & Chaffee, E. (1942). Observations on the mechanism of action of penicillin. Proceedings of the Society for Experimental Biology and Medicine, 50, 281–285.

    Article  CAS  Google Scholar 

  23. Ibrahim, W. L. F., Furu, P., Ibrahim, A. M., & Christensen, N. O. (1992). Effect of the orgaophosphorous insecticide, chlorpyrifos (Dursban), on growth, fecundity and mortality of Biomphalaria aexandrina and on the production of Schistosoma mansoni cercariae in the snail. Journal of Helminthology, 66, 79–88.

    Article  CAS  Google Scholar 

  24. Ji, C., Lee, S., Choi, K., Kwak, I., Lee, S., Cha, E., Lee, S., & Chon, T. (2007). Monitoring of movement behaviors of chironomid larvae after exposure to diazinon using fractal dimension and self-organizing map. International Journal of Ecodynamics, 2(1), 27–38.

    Article  Google Scholar 

  25. Kim, C., Kwak, I., Cha, E., & Chon, T. (2006). Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (Chironomidae: Diptera) for water quality monitoring. Ecological Modelling, 195, 61–71.

    Article  Google Scholar 

  26. Kong, F., Yin, D., & Yan, G. (2000). Environmental biology. Beijing: Higher Education Press (In Chinese).

    Google Scholar 

  27. Kussell, E., Kishony, R., Balaban, N. Q., & Leibler, S. (2005). Bacterial persistence: a model of survival in changing environments. Genetics, 169, 1807–1814.

    Article  Google Scholar 

  28. Kwak, I., Chon, T., Kang, H., Chung, N., Kim, J., & Koh, S. (2002). Pattern recognition of the movement tracks of medaka (Oryzias latipes) inresponse to sub-lethal treatments of an insecticide by using artificial neural networks. Environmental Pollution, 120, 671–681.

    Article  CAS  Google Scholar 

  29. Lewis, K. (2000). Programmed death in bacteria. Microbiology and Molecular Biology Reviews, 64, 503–514.

    Article  CAS  Google Scholar 

  30. Liu, Y., Lee, S., & Chon, T. (2011). Analysis of behavioral changes of zebrafish (Danio rerio) in response to formaldehyde using self-organizing map and a hidden Markov model. Ecological Modelling, 222(14), 2191–2201.

    Article  CAS  Google Scholar 

  31. Moore, A., & Waring, C. P. (1996). Sublethal effects of the pesticide diazinon on olfactory function in mature male Atlantic salmon parr. Journal of Fish Biology, 48, 758–775.

    Article  Google Scholar 

  32. Nakayamaa, K., Oshimaa Y., Tsurudab, Y., Kanga, I. J., Kobayashic, M., Imadaa, N., & Honjo, T. (2004). Fertilization success and sexual behavior in male medaka, Oryzias latipes, exposed to tributyltin. Chemosphere, 55(10), 1331–1337.

  33. Nimkerdphol, K., & Nakagawa, M. (2008). Effect of sodium hypochlorite on zebrafish swimming behavior estimated by fractal dimension analysis. Journal of Bioscience and Bioengineering, 105(5), 486–492.

    Article  CAS  Google Scholar 

  34. Nishiuchi, Y., & Hashimoto, Y. (1967). Toxicity of pesticide ingredients to some fresh water organisms. Science of Pest Control, 32, 5–11.

    CAS  Google Scholar 

  35. Park, Y., Chung, N., Choi, K., Cha, E., Lee, S., & Chon, T. (2005). Computational characterization of behavioral response of medaka (Oryzias latipes) treated with diazinon. Aquatic Toxicology, 71, 215–228.

    Article  CAS  Google Scholar 

  36. Polansky, L., Wittemyer, G., Cross, P. C., Tambling, C. J., & Getz, W. M. (2010). From moonlight to movement and synchronized randomness: Fourier and wavelet analyses of animal location time series data. Ecology, 91(5), 1506–1518.

    Article  Google Scholar 

  37. Ren, Z., Li, Z., Zha, J., Ma, M., Wang, Z., & Gerhardt, A. (2007). The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna. Environmental Monitoring and Assessment, 134, 373–383.

    Article  CAS  Google Scholar 

  38. Ren, Z., & Wang, Z. (2010). The differences in the behavior characteristics between Daphnia magna and Japanese madaka in an on-line biomonitoring system. Journal of Environmental Sciences, 22(5), 703–708.

    Article  CAS  Google Scholar 

  39. Richard, O. D., Peter, E. H., & David, G. S. (2001). Pattern classification 2nd edn. USA: Wiley Interscience.

    Google Scholar 

  40. Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  41. Roast, S. D., Widdows, J., & Jones, M. B. (2000). Disruption of swimming in the hyperbenthic mysid Neomysis integer (Peracarida: Mysidaces) by the organophosphate pesticide chlorpyrifos. Aquatic Toxicology, 47, 227–241.

    Article  CAS  Google Scholar 

  42. Sandbacka, M., Christianson, I., & Isomaa, B. (2000). The acute toxicity of surfactants on fish cells, Daphnia magna and fish—a comparative study. Toxicology in Vitro, 14, 61–68.

    Article  CAS  Google Scholar 

  43. Scholze, M., Bodeker, W., Faust, M., Backhaus, T., Altenburger, R., & Grimme, L. H. (2001). A general best-fit method for concentrationresponse curves and the estimation of low-effect concentrations. Environmental Toxicology and Chemistry, 20(2), 448–457.

    Article  CAS  Google Scholar 

  44. Selye, H. (1973). The evolution of the stress concept. American Scientist, 61, 692–699.

    CAS  Google Scholar 

  45. Sun, R. Y., Li, B., Zhuge, Y., & Shang, Y. C. (1993). General ecology. Beijing: Higher Education Press.

  46. Tsuda, T., Kojima, M., Harada, H., Nakajima, A., & Aoki, S. (1997). Acute toxicity, accumulation and excretion of organophosphorous insecticides and their oxidation products in killifish. Chemosphere, 35(5), 939–949.

    Article  CAS  Google Scholar 

  47. Wang, Y., Liu, X., Hu, J., Li, L., & Li, Y. (2007). The simulation and experimental study of conductance sensor's electric field distribution. Petrol Instruments, 1(21), 16–18 (in Chinese).

    CAS  Google Scholar 

  48. Zhang, G., Chen, L., Chen, J., Ren, Z., Wang, Z., & Chon, T.-S. (2012). Evidence for the stepwise behavioral response model (SBRM): the effects of carbamate pesticides on medaka (Oryzias latipes) in an online monitoring system. Chemosphere, 87, 734–741.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (21107135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongming Ren.

Additional information

Research Highlights

• Measurements of behavior movement led to a simple mathematical description of threshold switch

• “Persister (p)” illustrated behavior “acclimation” and “adjustment (or readjustment)” clearly

• “Persisters (p)” is important for medaka to overcome “threshold” from the environmental stress

Haitang Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Yang, H., Si, G. et al. Persistence Parameter: a Reliable Measurement for Behavioral Responses of Medaka (Oryzias latipes) to Environmental Stress. Environ Model Assess 21, 159–167 (2016). https://doi.org/10.1007/s10666-015-9458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-015-9458-2

Keywords

Navigation