Skip to main content

Advertisement

Log in

Regional Characteristics of Impact Factors for Energy-Related CO2 Emissions in China, 1997–2010: Evidence from Tests for Threshold Effects Based on the STIRPAT Model

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper analyses the forces driving energy-related CO2 emissions based on a threshold STIRPAT dynamic model, using Chinese state-level panel data during the period of 1997 to 2010. In addition to investigating the impact of affluence on CO2 emissions, this paper studies channels through which affluence could impact on CO2 emissions across development levels and explores the possibility of reducing CO2 emissions through greater affluence by analysing panels including all regions, high-income regions and low-income regions. A threshold STIRPAT dynamic model further estimates thresholds for the major determinants of CO2 emissions: in the long run, affluence is the most important determinant followed by urban population. Variability of affluence impact on CO2 emissions in high-income regions is explained mostly by trade openness degree, while low-income regions with a higher industrial level are associated with lower CO2 emissions. Different measures should be adopted for CO2 reductions in different regions according to local conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aşici, A. A. (2013). Economic growth and its impact on environment: a panel data analysis. Ecological Indicators, 24(1), 324–333.

    Google Scholar 

  2. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-component models. Journal of Econometrics, 68(1), 29–51.

    Article  Google Scholar 

  3. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143.

    Article  Google Scholar 

  4. Bongaarts, J. (1992). Population growth and global warming. Population and Development Review, 18, 299–319.

  5. Carson, R. (2010). The Environmental Kuznets Curve: seeking empirical regularity and theoretical structure. Review of Environmental Economics and Policy, 4(1), 3–23.

    Article  Google Scholar 

  6. Chertow, M. (2001). The IPAT equation and its variants: changing views of technology and environmental impact. Journal of Industrial Ecology, 4(4), 13–29.

    Article  Google Scholar 

  7. Commoner, B. (1971). The closing circle: Nature, man, and technology (1st ed.). New York: Alfred Knopf.

  8. Commoner, B. (1972). The environmental cost of economic growth, in population, resources and the environment (pp. 339–363). Washington, DC: GPO.

    Google Scholar 

  9. Cramer, J. C. (1998). Population growth and air quality in California. Demography, 35(1), 45–56.

    Article  CAS  Google Scholar 

  10. Dietz, T., & Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human Ecology Review, 1, 277–300.

    Google Scholar 

  11. Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 94, 175–179.

    Article  CAS  Google Scholar 

  12. Du, L. M., Wei, C., & Cai, S. H. (2012). Economic development and carbon dioxide emissions in China: provincial panel data analysis. China Economic Review, 23(2), 371–384.

    Article  Google Scholar 

  13. Ehrlich, P., & Holdren, J. (1971). The impact of population growth. Science, 171, 1212–1217.

    Article  CAS  Google Scholar 

  14. Ehrlich, P., & Holdren, J. (1972). One-dimensional economy. Bulletin of the atomic scientists, 28, 16–27.

    Google Scholar 

  15. Fan, Y., Liu, L. C., Wu, G., & Wei, Y. M. (2006). Analyzing impact factors of CO2 emissions using the STIRPAT model. Environmental Impact Assessment Review, 26(4), 377–395.

    Article  Google Scholar 

  16. Fischer-Kowalski, M., & Amman, C. (2001). Beyond IPAT and Kuznets curves: globalization as a vital factor in analyzing environmental impact of socioeconomic metabolism. Population and Environment, 23(1), 7–47.

    Article  Google Scholar 

  17. Friedl, B., & Getzner, M. (2003). Determinants of CO2 emissions in a small open economy. Ecological Economics, 45(1), 133–148.

  18. Grossman, G. M., Krueger, A. B. (1991). Environmental impacts of the North American Free Trade Agreement. NBER. Working paper 3914.

  19. Hansen, B. E. (2000). Sample splitting and threshold estimation. Econometrica, 68(3), 575–603.

    Article  Google Scholar 

  20. Hayakawa, K. (2007). Small sample bias properties of the system GMM estimator in dynamic panel models. Economics Letters, 95(1), 32–38.

    Article  Google Scholar 

  21. IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

  22. Jia, J. S., Deng, H. B., Duan, J., & Zhao, J. Z. (2009). Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method-a case study in Henan Province, China. Ecological Economics, 68, 2818–2824.

    Article  Google Scholar 

  23. Liddle, B. (2012). What are the carbon emissions elasticities for income and population? A robustness exercise employing the STIRPAT framework. USAEE Working Paper No. 12–135. Available via SSRN. http://ssrn.com/abstract=2162222.

  24. Levin, A., Lin, C.-F., & Chia-Shang, J. C. (2002). Unit root tests in panel data: Asymptotic and finite sample properties. Journal of Econometrics, 108(1), 1–24. Levin A, Lin C-F, Chia-Shang JC, 2002. Unit root tests in panel data: Asymptotic and finite sample properties. Journal of Econometrics 108(1), 1–24.

  25. Liddle, B. (2013). The energy, economic growth, urbanization nexus across development: evidence from heterogeneous panel estimates robust to cross-sectional dependence. The Energy Journal, 34(2), 223–244.

    Article  Google Scholar 

  26. Liddle, B. (2013). Population, affluence, and environmental impact across development: evidence from panel cointegration modeling. Environmental Modelling & Software, 40(2), 255–266.

    Article  Google Scholar 

  27. Liddle, B. (2013). Urban density and climate change: a STIRPAT analysis using city-level data. Journal of Transport Geography, 28(3), 22–29.

    Article  Google Scholar 

  28. Liddle, B., & Lung, S. (2013). The long-run causal relationship between transport energy consumption and GDP: evidence from heterogeneous panel methods robust to cross-sectional dependence. Economics Letters, 121(3), 524–527.

    Article  Google Scholar 

  29. Li, G. Z., & Li, Z. Z. (2010). Regional difference and influence factors of China’s carbon dioxide emissions. China Population, Resources and Environment, 20(5), 22–27.

    Google Scholar 

  30. Narayan, P., Smyth, R., & Prasad, A. (2007). Electricity consumption in G7 countries: a panel cointegration analysis of residential demand elasticities. Energy Policy, 35(9), 4485–4494.

    Article  Google Scholar 

  31. O’Neill, B., Liddle, B., Jiang, L., Smith, K., Pachauri, S., Dalton, M., & Fuchs, R. (2012). Demographic change and carbon dioxide emissions. The Lancet, 380(9837), 157–164.

    Article  Google Scholar 

  32. Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312.

    Article  Google Scholar 

  33. Roodman, D. (2006). How to do xtabond2: an introduction to difference and system GMM in Stata. The Stata Journal, 9(1), 86–136.

    Google Scholar 

  34. Schulze, P. C. (2002). I = PBAT. Ecological Economics, 40(2), 149–150.

    Article  Google Scholar 

  35. Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecological Economics, 44, 29–42.

    Article  Google Scholar 

  36. Shao, S., Yang, L., & Cao, J. (2010). Study on influencing factors of CO2 emissions from industrial energy consumption. Journal of Finance and Economics, 36(11), 16–27.

  37. Shao, S., Yang, L. L., Yu, M. B., & Yu, M. L. (2011). Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai(China), 1994–2009. Energy Policy, 39(10), 6476–6494.

    Article  Google Scholar 

  38. Song, M.-L., Zhang, W., & Wang, W.-J. (2013). Inflection point of environmental Kuznets curve in Mainland China. Energy Policy, 57(6), 14–20. doi:10.1007/s10666-014-9424-4

  39. Squalli, J. (2010). An empirical assessment of U.S. state-level immigration and environmental emissions. Ecological Economics, 69(5), 1170–1175.

    Article  Google Scholar 

  40. Stern, D. (2010). Between estimates of the emissions-income elasticity. Ecological Economics, 69, 2173–2182.

    Article  Google Scholar 

  41. Tyler, D. R. (2011). Applying the STIRPAT model in a post-Fordist landscape: can a traditional econometric model work at the local level? Applied Geography, 31(2), 731–739.

    Article  Google Scholar 

  42. Waggoner, P. E., & Ausubel, J. H. (2002). A framework for sustainability science: a renovated IPAT identity. Proceedings of the National Academy of Sciences of the USA, 99(12), 7860–7865.

    Article  CAS  Google Scholar 

  43. Wagner, M. (2008). The carbon Kuznets curve: a cloudy picture emitted by bad econometrics? Resource and Energy Economics, 30(3), 388–408.

    Article  Google Scholar 

  44. Wang, H. S., Lei, Y., Wang, H. K., Liu, M. M., Yang, J., & Bi, J. (2013). Carbon reduction potentials of China’s industrial parks: a case study of Suzhou Industry Park. Energy, 55, 668–675.

    Article  Google Scholar 

  45. Wang, P., Wu, W. S., Zhu, B. Z., & Wei, Y. M. (2013). Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Applied Energy, 106(6), 65–71.

    Article  CAS  Google Scholar 

  46. Wang, M. W., Che, Y., Yang, K., Wan, M., Xiong, L. J., & Huang, Y. C. (2011). A local-scale low-carbon plan based on the STIRPAT model and the scenario method: the case of Minhang District, Shanghai, China. Energy Policy, 39(11), 6981–6990.

    Article  CAS  Google Scholar 

  47. Wang, Z. H., Yin, F. C., Zhang, Y. X., & Zhang, X. (2012). An empirical research on the influencing factors of regional emissions: evidence from Beijing city, China. Applied Energy, 100(12), 277–284.

    Article  CAS  Google Scholar 

  48. Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709–748.

  49. Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics, 126(1), 25–51.

    Article  Google Scholar 

  50. York, R., Rosa, E., & Dietz, T. (2003). Footprints on the earth: the environmental consequences of modernity. American Sociological Review, 68, 279–300.

    Article  Google Scholar 

  51. York, R., Rosa, E., & Dietz, T. (2003). A rift in modernity? Assessing the anthropogenic sources of global climate change with the STIRPAT model. International Journal of Sociology and Social Policy, 23, 31–51.

    Article  Google Scholar 

  52. York, R., Rosa, E., & Dietz, T. (2003). STIRPAT, IPAT, and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351–365.

    Article  Google Scholar 

  53. Zhao, C. S., Niu, S. W., & Zhang, X. (2012). Effects of household energy consumption on environment and its influence factors in rural and urban areas. Energy Procedia, 14, 805–818.

    Article  CAS  Google Scholar 

  54. Zhang, C. G., & Lin, Y. (2012). Panel estimation for urbanisation, energy consumption and CO2 emissions: a regional analysis in China. Energy Policy, 49(10), 488–498.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (grant no. 71373172) and the Independent Innovation Foundation of Tianjin University (grant no. 60304002). We especially thank the anonymous reviewers for their insightful comments and suggestions. All remaining errors are ours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yuan.

Appendix

Appendix

See Tables 8, 9, 10 and 11.

Table 8 Descriptions of the main parameter variables in Eq. (4)
Table 9 Descriptive statistics of the variables in Eq. (12)
Table 10 CO2 emission intensity and its annual average and growth rate in China (ton per capita and percent, respectively)
Table 11 Description of control variables used in Robustness analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R., Zhao, T., Xu, X. et al. Regional Characteristics of Impact Factors for Energy-Related CO2 Emissions in China, 1997–2010: Evidence from Tests for Threshold Effects Based on the STIRPAT Model. Environ Model Assess 20, 129–144 (2015). https://doi.org/10.1007/s10666-014-9424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-014-9424-4

Keywords

Navigation