Skip to main content
Log in

An Approach to Multi-criteria Environmental Evaluation with Multiple Weight Assignment

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In the domain of environmental protection, multi-criteria evaluation is used in cases where multiple alternatives, on the bases of multiple parameters, need to be evaluated. Depending on the particular goal of investigation, various approaches have been developed and applied. This various multi-criteria approaches differ in parameter weighting method, in data normalization method as well as in the method for assessment of alternatives. According to the applied multi-criteria methodology, the result, i.e., the rank of alternatives may differ to some extent. In this context, parameter weighting bears special significance in multi-criteria evaluation, while the choice of method is crucial for final result. The specificity of parameter weighting process in environment protection is directly related to pronounced interdisciplinary character of this area, as well as the large number of influential parameters. With this in mind, this paper presents an approach to multi-criteria evaluation which—through integration of three specific methods for parameter weighting—allows more flexible and multi-purpose application. Based on the established concept, a software application was developed. Besides automated parameter weighting, it also provides graphical interpretation of results. The developed approach and software have been verified on the case study related to evaluation of environmental loadings at six locations in the city of Novi Sad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alvarez-Guerra, M., Viguri, J. R., & Voulvoulis, N. (2009). A multicriteria-based methodology for site prioritisation in sediment management. Environment International, 35(6), 920–930.

    Article  Google Scholar 

  2. Ashtiani, B., Haghighirad, F., Makui, A., & Montazer, G. (2009). Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Applied Soft Computing, 9(2), 457–461.

    Article  Google Scholar 

  3. Chambal, S., Shoviak, M., & Thal, A. (2003). Decision analysis methodology to evaluate integrated solid waste management alternatives. Environmental Modeling and Assessment, 8(1), 25–34.

    Article  Google Scholar 

  4. Chang, N. B., & Makkeasorn, A. (2010). Optimal site selection of watershed hydrological monitoring stations using remote sensing and grey integer programming. Environmental Modeling and Assessment, 15(6), 469–486.

    Article  Google Scholar 

  5. Crnobrnja, B., Budak, I., Ilic, M., & Hodolic, J. (2009). Environmental labelling of products with type I labels. RMZ Materials and Geoenvironment, 56(3), 346–355.

    Google Scholar 

  6. Delle Site, P., & Filippi, F. (2009). Weighting methods in multi-attribute assessment of transport projects. European Transport Research Review, 1(4), 199–206.

    Article  Google Scholar 

  7. Directorate of the City of Novi Sad for Environmental Protection (2008). Ekobilten, March 2008, Novi Sad, Serbia. (in Serbian)

  8. Edwards, W. (1977). How to use multiattribute utility measurement for social decision making. IEEE Transactions on Systems, Man, and Cybernetics, 7(5), 326–340.

    Article  Google Scholar 

  9. Gheorghe, R. A., Bufardi, A., & Xirouchakis, P. (2005). Fuzzy multicriteria decision aid method for conceptual design. CIRP Annals-Manufacturing Technology, 54(1), 151–154.

    Article  Google Scholar 

  10. Filar, J. A., Ross, N. P., & Wu, M.-L. (2003). Environmental assessment based on multiple indicators. Calcutta Statistical Association Bulletin, 54(213–214), 93–104.

    Google Scholar 

  11. Ginevicius, R., & Podvezko, V. (2008). Multicriteria graphical-analytical evaluation of the financial state of construction enterprises. Technological and Economic Development of Economy, 14(4), 452–461.

    Article  Google Scholar 

  12. Guo, P., Huang, G. H., He, L., & Li, H. L. (2009). Interval-parameter Fuzzy-stochastic semi-infinite mixed-integer linear programming for waste management under uncertainty. Environmental Modeling and Assessment, 14(4), 521–537.

    Article  Google Scholar 

  13. Hermann, B. G., Kroeze, C., & Jawjit, W. (2007). Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. Journal of Cleaner Production, 15(18), 1787–1796.

    Article  Google Scholar 

  14. Hodolic, J., Badida, M., Majernik, M., & Sebo, D. (2003). Mechanical engineering in environmental protection. In I. Cosic (Ed.), Method for complex evaluation of environmental loading (pp. 227–232). Novi Sad: Faculty of Technical Sciences (in Serbian).

    Google Scholar 

  15. Huang, C. C., & Ma, H. W. (2004). A multidimensional environmental evaluation of packaging materials. Science of the Total Environment, 324(1–3), 161–172.

    Article  CAS  Google Scholar 

  16. Huang, G. H., Sae-Lim, N., Liu, L., & Chen, Z. (2001). An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning. Environmental Modeling and Assessment, 6(4), 271–283.

    Article  Google Scholar 

  17. Huettner, M., Leemans, R., Kok, K., & Ebeling, J. (2009). A comparison of baseline methodologies for ‘Reducing Emissions from Deforestation and Degradation’. Carbon Balance and Management. doi:10.1186/1750-0680-4-4.

  18. Hwang, C. L., & Yoon, K. S. (1981). Multiple attribute decision making: methods and applications. Berlin: Springer.

    Book  Google Scholar 

  19. Hyde, K. M., & Maier, H. R. (2006). Distance-based and stochastic uncertainty analysisfor multi-criteria decision analysis in Excel using Visual Basic for Applications. Environmental Modelling and Software, 21(12), 1695–1710.

    Article  Google Scholar 

  20. Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: preferences and value trade-offs. New York: Wiley.

    Google Scholar 

  21. Kutz, M. (2007). Environmentally conscious manufacturing. Hoboken: Wiley.

    Book  Google Scholar 

  22. Kutz, M. (2007). Environmentally conscious mechanical design. Hoboken: Wiley.

    Book  Google Scholar 

  23. Li, Y. P., Huang, G. H., Yang, Z. F., & Nie, S. L. (2009). IFTCIP: an integrated optimization model for environmental management under uncertainty. Environmental Modeling and Assessment, 14(3), 315–332.

    Article  Google Scholar 

  24. Mavrotas, G., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., Lalas, D., Hontou, V., et al. (2007). An integrated approach for the selection of Best Available Techniques (BAT) for the industries in the greater Athens area using multi-objective combinatorial optimization. Energy Economics, 29(4), 953–973.

    Article  Google Scholar 

  25. Mrkajic, V., Stamenkovic, M., Males, M., Vukelic, D., & Hodolic, J. (2010). Proposal for reducing problems of the air pollution and noise in the urban environments. Carpathian Journal of Earth and Environmental Sciences, 5(1), 49–56.

    Google Scholar 

  26. Nassar, K., Thabet, W., & Beliveau, Y. (2003). A procedure for multi-criteria selection of building assemblies. Automation in Construction, 12(5), 543–560.

    Article  Google Scholar 

  27. Nowosielski, R., Kania, A., & Spilka, M. (2007). Indicators of technological processes environmental estimation. Journal of Achievements in Materials and Manufacturing Engineering, 22(2), 99–102.

    Google Scholar 

  28. Poyhonen, M., & Hamalainen, R. P. (2001). On the convergence of multiattribute weighting methods. European Journal of Operational Research, 1(4), 199–206.

    Google Scholar 

  29. Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.

    Google Scholar 

  30. Sadiq, R., & Tesfamariam, S. (2009). Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process. Stochastic Environmental Research and Risk Assessment, 23(1), 75–91.

    Article  Google Scholar 

  31. Schollenberger, H., Treitz, M., Geldermann, J., & Rentz, O. (2005). Operations research proceedings. In H. Fleuren, D. den Hertog, & P. Kort (Eds.), Multi Objective Pinch Analysis (MOPA) using PROMETHEE to evaluate resource efficiency (pp. 565–570). Bremen: Springer.

    Google Scholar 

  32. Simunovic, K., Draganjac, T., & Simunovic, G. (2008). Application of different quantitative techniques to inventory classification. Tehnicki Vjesnik-Technical Gazette, 15(4), 41–47.

    Google Scholar 

  33. Simunovic, K., Simunovic, G., & Saric, T. (2009). Application of artificial neural networks to multiple criteria inventory classification. Strojarstvo, 51(4), 313–321.

    Google Scholar 

  34. Stavros, E. D., Giannis, T. T., Costas, P. P., & Nikos, P. R. (2004). Aggregating and evaluating the results of different Environmental Impact Assessment methods. Ecological Indicators, 4(2), 125–138.

    Article  Google Scholar 

  35. Sudhakar, Y., & Shrestha, R. M. (2003). Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi. Transportation Research Part A: Policy and Practice, 37(8), 717–729.

    Article  Google Scholar 

  36. Tian, L., & Wilding, G. (2008). Confidence interval estimation of a common correlation coefficient. Computational Statistics and Data Analysis, 52(10), 4872–4877.

    Article  Google Scholar 

  37. Votruba, L., & Kos, Z. (1988). Analysis of water resource systems. Amsterdam: Elsevier.

    Google Scholar 

  38. von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research. Cambridge: Cambridge University Press.

    Google Scholar 

  39. Wang, Y. M., Yang, J. B., & Xu, D. L. (2006). Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 174(3), 1885–1913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Budak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarski, B., Budak, I., Kosec, B. et al. An Approach to Multi-criteria Environmental Evaluation with Multiple Weight Assignment. Environ Model Assess 17, 255–266 (2012). https://doi.org/10.1007/s10666-011-9294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9294-y

Keywords

Navigation