Skip to main content

Advertisement

Log in

Mathematical Modeling and Numerical Algorithms for Simulation of Oil Pollution

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 27 May 2012

Abstract

This paper deals with the mathematical modeling and algorithms for the problem of oil pollution. For solving this task, we derive the adjoint problem for the advection–diffusion equation describing the propagation of oil slick after an accident, which we call the main problem. We prove a fundamental equality between the solutions of the main and the adjoint problems. Based on this equality, we propose a novel method for the identification of the pollution source location and the accident time of oil emission. This approach is illustrated on an example for an accident in the offshore of the central part of the Vietnamese coast. Numerical simulations demonstrate the effectiveness of the proposed method. Besides, the method is verified for 1D model of substance propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bagtzoglou, A. C., & Atmadja, J. (2005). Mathematical methods for hydrologic inversion: The case of pollution source identification. Handbook of Environmental Chemistry, 5, 65–96.

    Article  CAS  Google Scholar 

  2. Cacuci, D. G., & Schlesinger, M. E. (1994). On the application of the adjoint method of sensitivity analysis to problems in the atmospheric sciences. Atmósfera, 7, 47–59.

    Google Scholar 

  3. Cheng, W. P., & Jia, Y. (2010). Identification of contaminant point source in surface waters based on backward location probability density function method. Advanced Water Resources, 33, 397–410.

    Article  CAS  Google Scholar 

  4. Dang, Q. A. (2002). Monotone difference schemes for solving some problems of air pollution. Advances in Natural Sciences, 4, 297–307.

    Google Scholar 

  5. Dang, Q. A., & Ehrhardt, M. (2006). Adequate numerical solution of air pollution problems by positive difference schemes on unbounded domains. Mathematical and Computer Modelling, 44, 834–856.

    Article  Google Scholar 

  6. Dang, Q. A., Ehrhardt, M., Tran, G. J., & Le, D. (2007). On the numerical solution of some problems of environmental pollution. In C. B. Bodine (Ed.), Air pollution research advances (pp. 171–200). Hauppauge: Nova Science.

    Google Scholar 

  7. Dimov, I., & Zlatev, Z. (2002). Optimization problems in air-pollution modeling. In P. M. Pardalos, M. G. C. Resende (Eds.), Handbook on applied optimization. Oxford: Oxford University Press.

    Google Scholar 

  8. Doerffer, J. W. (1992). Oil spill response in the marine environment. Oxford: Pergamon.

    Google Scholar 

  9. Fay, J. A. (1971). Physical processes in the spread of oil on a water surface. In Proc. conf. prevention and control of oil spills (pp. 463–467). Washington, D.C.: American Petroleum Institute.

    Google Scholar 

  10. Kreiss, H.-O., & Lorenz, J. (1989). Initial-boundary value problems and the Navier–Stokes equations. New York: Academic.

    Google Scholar 

  11. Lehr, W. J., Fraga, R. J., Belen M. S., & Cekirge, H. M. (1984). A new technique to estimate initial spill size using a modified fay-type spreading formula. Marine Pollution Bulletin, 15, 326–329.

    Article  Google Scholar 

  12. Marchuk, G. I. (1986). Mathematical models in environmental problems. New York: Elsevier.

    Google Scholar 

  13. Marchuk, G. I. (1995). Adjoint equations and analysis of complex systems. Dordrecht: Kluwer.

    Google Scholar 

  14. Milnes, E., & Perrochet, P. (2007). Simultaneous identification of a single pollution point-source location and contamination time under known flow field conditions. Advances in Water Resources, 30, 2439–2446.

    Article  Google Scholar 

  15. Neupauer, R. M., & Wilson, J. L. (1999). Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant. Water Resources Research, 35, 3389–3398.

    Article  Google Scholar 

  16. Pudykiewicz, J. A. (1998). Application of adjoint tracer transport equations for evaluating source parameters. Atmospheric Environment, 32, 3039–3050.

    Article  CAS  Google Scholar 

  17. Reed, M., Johansen, Ø., Brandvik, P. J., Daling, P., Lewis, A., Fiocco, R., et al. (1999). Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Science & Technology Bulletin, 5, 3–16.

    Google Scholar 

  18. Reed, M. (2001). Technical description and verification tests of OSCAR2000, a multi-component 3-dimensional oil spill contingency and response model. SINTEF Applied Chemistry Report.

  19. Samarskii, A. A. (2001). The theory of difference schemes. New York: Dekker.

    Book  Google Scholar 

  20. Skiba, Y. N. (1995). Direct and adjoint estimates in the oil spill problem. Revista Internacional de Contaminación Ambiental, 11, 69–75.

    Google Scholar 

  21. Skiba, Y. N. (1996). Dual oil concentration estimates in ecologically sensitive zones. Environmental Monitoring and Assessment, 43, 139–151.

    Article  Google Scholar 

  22. Skiba, Y. N. (1996). The derivation and applications of the adjoint solutions of a simple thermodynamic limited area model of the atmosphere–ocean–soil system. World Resource Review, 8, 98–113.

    Google Scholar 

  23. Skiba, Y. N. (1999). Direct and adjoint oil spill estimates. Environmental Monitoring and Assessment, 59, 95–109.

    Article  CAS  Google Scholar 

  24. Skiba, Y. N., & Parra-Guevara, D. (1999). Mathematics of oil spills: Existence, uniqueness, and stability of solutions. Geofísica Internacional, 38, 117–124.

    Google Scholar 

  25. Skiba, Y. N. (2003). On a method of detecting the industrial plants which violate prescribed emission rates. Ecological Modelling, 159, 125–132.

    Article  CAS  Google Scholar 

  26. Skiba, Y. N., Parra-Guevara, D., & Belitskaya, D. V. (2005). Air quality assessment and control of emission rates. Environmental Monitoring and Assessment, 111, 89–112.

    Article  CAS  Google Scholar 

  27. Wang, H. Q. & Lacroix, M. (1997). Optimal weighting in the finite difference solution of the convection–dispersion equation. Journal of Hydrology, 200, 228–242.

    Article  Google Scholar 

  28. Wang, S.-D., Shen, Y.-M., & Zheng, Y.H. (2005). Two-dimensional numerical simulation for transport and fate of oil spills in seas. Ocean Engineering, 32, 1556–1571.

    Article  Google Scholar 

  29. Yanenko, N. N. (1971). The method of fractional steps. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This first two authors were supported partially by the bilateral German–Vietnamese project OILPOLL: Mathematical Modelling and Numerical Algorithms for Simulation of Oil Pollution, financed by the International Buro of the BMBF. The third author was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ehrhardt.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10666-012-9324-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, Q.A., Ehrhardt, M., Tran, G.L. et al. Mathematical Modeling and Numerical Algorithms for Simulation of Oil Pollution. Environ Model Assess 17, 275–288 (2012). https://doi.org/10.1007/s10666-011-9291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9291-1

Keywords

Mathematics Subject Classifications (2010)

Navigation