Skip to main content
Log in

Numerical Modeling of Flow Fields and Dispersion of Passive Pollutants in the Vicinity of the Temelín Nuclear Power Plant

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This study deals with numerical simulation of flow fields and dispersion of model passive admixtures in the planetary boundary layer in a 10 × 10 km square area, centered on the Czech Republic’s Temelín Nuclear Power Plant. Numerical calculations of three-dimensional flow fields with eight basic wind directions given for the inlet boundary of the computational domain are performed using the FLUENT CFD code with the standard kε turbulence model. The resultant modeling of the flow fields provides information as to probable local directions and velocities of flow vectors on a horizontal scale of 100 m, which are consistent with the data given for the boundaries of the calculation area in the framework of a scale of 10 km. The modeled flow fields generate the input data for related Lagrangian simulation of the ground concentration and deposition fields of passive particles assumedly emitted at the site of the Temelín plant. Simulated plumes describe eight cases of potential ground-level distribution of model passive admixtures in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ApSimon, H. M., Goddard, A. J. H., & Wrigley, J. (1985). Long-range atmospheric dispersion of radioisotopes—I. The MESOS model. Atmospheric Environment, 19(1), 99–111.

    Article  CAS  Google Scholar 

  2. Apsley, D. D., & Castro, I. P. (1997). Numerical modelling of flow and dispersion around cinder cone butte. Atmospheric Environment, 31(7), 1059–1071.

    Article  CAS  Google Scholar 

  3. Bonelli, P., Calori, G., & Finzi, G. (1992). A fast long-range transport model for operational use in episode simulation—Application to the Chernobyl accident. Atmospheric Environment, 26(14), 2523–2535.

    Google Scholar 

  4. Boybeyi, Z., & Raman, S. (1995). Numerical investigation of possible role of local meteorology in Bhopal gas accident. Atmospheric Environment, 29(4), 479–496.

    Article  CAS  Google Scholar 

  5. Eder, E., Dehos, R., & Schorling, M. (1997). On-line calculation of the dispersion of radioactive substances in air on the basis of a Lagrangian model. Kerntechnik, 62(5–6), 227–231.

    CAS  Google Scholar 

  6. Han, M. H., Cho, G. S., Lee, K. J., & Chun, M. H. (1995). Spherical approximation in gamma dose calculations and its application to an emergency response action at Kori reactor site in Korea. Annals of Nuclear Energy, 22(7), 441–452.

    Article  CAS  Google Scholar 

  7. Jiang, W., Hu, F., & Wang, W. (2000). A non-hydrostatic dispersion modeling system and its application to air pollution assessments over coastal complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 87, 15–43.

    Article  Google Scholar 

  8. Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301–314.

    Article  Google Scholar 

  9. Květoň, V. (2000). The Temelín NPP operation influence on weather an climate. A contractual survey drown up under the Contract for Work no. 101-00/S-Czech Hydrometeorological Institute.

  10. Laudner, B. E., & Spalding, D. B. (1974). Mathematical models of turbulence. New York: Academic.

    Google Scholar 

  11. Maurizi, A., Palma, J. M. L. M., & Castro, F. A. (1998). Numerical simulation of the atmospheric flow in a mountainous region of the North of Portugal. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 219–228.

    Article  Google Scholar 

  12. McQueen, J. T., Draxler, R. R., & Rolph, G. D. (1995). Influence of grid size and terrain resolution on wind-field predictions from an operational mesoscale model. Journal of Applied Meteorology, 34(10), 2166–2181.

    Article  Google Scholar 

  13. Moreira, D. M., Tirabassi, T., Vilhena, M. T., & Carvalho, J. C. (2005). A semi-analytical model for the tritium dispersion simulation in the PBL from the Angra I nuclear power plant. Ecological Modelling, 189(3–4), 413–424.

    Article  CAS  Google Scholar 

  14. Nelson, N., Kitchen, K. P., & Maryon, R. H. (2006). A study of the movement of radioactive material discharged during the windscale fire in October 1957. Atmospheric Environment, 40(1), 58–75.

    Article  CAS  Google Scholar 

  15. Panofsky, P. A., Tennekes, H., Lenschow, D. H., & Wyngaard, J. C. (1977). The characteristic of turbulent velocity components in the surface layer under convective condition. Boundary-Layer Meteorology, 11, 355–361.

    Article  Google Scholar 

  16. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Book Co.

  17. Piedelievre, J. P., Mussongenon, L., & Bompay, F. (1990). MEDIA—An Eulerian model of atmospheric dispersion—1st validation on the Chernobyl release. Journal of Applied Meteorology, 29(12), 1205–1220.

    Article  Google Scholar 

  18. Pollanen, R., Valkama, I., & Toivonen, H. (1997). Transport of radioactive particles from the Chernobyl accident. Atmospheric Environment, 31(21), 3575–3590.

    Article  CAS  Google Scholar 

  19. Richards, R. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 46(47), 145–153.

    Article  Google Scholar 

  20. Řezáčová, D., & Sokol, Z. (2000). Cooling tower siding influence on weather and climate. Research report. Produced under the Contract for Work, Institute of Atmospheric Physics, Prague, p. 78.

  21. Smítka, J. (2004). Climate Monitoring in Close Vicinity of NPP Temelín by Means of Czech Hydrometeorological Institute Meteorological Station Network. Proceedings of The Temelín NPP Influence Assessment on Environment Conference, České Budějovice, Czech Republic, pp. 44–51.

  22. Srinivas, C., & Venkatesan, R. (2005). A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site. Atmospheric Environment, 39(8), 1497–1511.

    Article  CAS  Google Scholar 

  23. Talerko, N. (2005). Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident. Journal of Environmental Radioactivity, 78(3), 311–329.

    Article  CAS  Google Scholar 

  24. Thaning, L., & Baklanov, A. (1997). Simulation of the atmospheric transport and deposition on a local/meso- and regional scale after hypothetical accidents at the Kola nuclear power plant. The Science of the Total Environment, 202(1–3), 199–210.

    CAS  Google Scholar 

  25. Thompson, J. F., Thames, F. C., & Mastin, C. M. (1982). Boundary fitted coordinate systems for numerical solution of partial differential equations. Journal of Computational Physics, 47, 1–107.

    Article  Google Scholar 

  26. Van Doormal, J. P., & Raithy, G. D. (1984). Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7, 147–163.

    Article  Google Scholar 

  27. Vozobule, V. (2004). Climate Change Monitoring Measurement Point Network in the Close Proximity of the Temelín NPP. Proceedings of The Temelín NPP Influence Assessment on Environment Conference, České Budějovice, Czech Republic, pp. 39–43.

  28. Zannetti, P. (1990). Air pollution modeling—Theories, computational methods and available software. Wit Pr/Computational Mechanics.

Download references

Acknowledgments

This study was supported by Ministry of the Environment of the Czech Republic as part of project VaV/640/08/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Vach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vach, M., Duong, V.M. Numerical Modeling of Flow Fields and Dispersion of Passive Pollutants in the Vicinity of the Temelín Nuclear Power Plant. Environ Model Assess 16, 135–143 (2011). https://doi.org/10.1007/s10666-010-9239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-010-9239-x

Keywords

Navigation