Skip to main content

Advertisement

Log in

A Classification Procedure for Mapping Topo-climatic Conditions for Strategic Vegetation Planning

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Environmental classification addresses issues involving the representation and analysis of continuous and variable ecological data. This study creates a methodology to define topo-climatic landscapes (TCL) in the north-west of Catalonia, which is situated in the north-east of the Iberian Peninsula. TCL provide data regarding the ecological behavior of a landscape in terms of its topography, physiognomy, and climate, which are the main drivers of an ecosystem. The variables selected are derived from a variety of different sources, such as remote sensing and climatic atlases. The methodology employed combines unsupervised iterative cluster classification with supervised fuzzy classification. Twenty eight TCL, which can be differentiated in terms of their vegetation physiognomy and vegetation altitudinal range type, were selected for the study area. Furthermore, a hierarchy among the TCL is established which permits the merging of clusters and allows for changes in thematic resolution. By using the topo-climatic landscape map, managers can identify patches with similar environmental conditions and at the same time assess the uncertainty involved in classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TCL:

Topo-climatic Landscapes

MCA:

Multiple correspondence analysis

HMC:

Habitat Map of Catalonia

References

  1. Bailey, R. (2004). Identifying ecoregion boundaries. Environmental Management, 34, S14–S26.

    Article  Google Scholar 

  2. Loveland, T. R., & Merchant, J. M. (2004). Ecoregions and ecoregionalization: geographical and ecological perspectives. Environmental Management, 34, S1–S13.

    Article  Google Scholar 

  3. Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125.

    Article  Google Scholar 

  4. McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. University of Massachusetts, Amherst. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html.

  5. Wolock, D. M., Winter, T. C., & McMahon, G. (2004). Delineation and evaluation of hydrologic-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environmental Management, 34, S71–S88.

    Article  Google Scholar 

  6. Blaschke, J., & Strobl, G. (2003). Defining landscape units through integrated morphometric characteristics. In E. Buhmann & S. Ervin (Eds.), Landscape modeling: Digital techniques for landscape architecture (pp. 104–113). Heidelberg: Wichmann.

    Google Scholar 

  7. Host, G. E., Polzer, P. L., Mladenoff, D. J., White, M. A., & Crow, T. R. (1996). A quantitative approach to developing regional ecosystem classifications. Ecological Applications, 6, 608–618.

    Article  Google Scholar 

  8. DeGaetano, A. T. (1996). Delineation of mesoscale climate zones in the Norteastern United States using a novel approach to cluster analysis. Journal of Climate, 9, 1765–1782.

    Article  Google Scholar 

  9. Rhee, J., Im, J., Carbone, G. J., & Jensen, J. R. (2008). Delineation of climate regions using in-situ and remotely sensed data for the Carolinas. Remote Sensing of Environment, 112, 3099–3311.

    Article  Google Scholar 

  10. Bailey, R. (1996). Ecosystem geography. Berlin: Springer.

    Google Scholar 

  11. Carter, R. E., MacKenzie, M. D., & Gjerstad, D. H. (1999). Ecological land classification in the southern loam hills of south Alabama. Forest Ecology and Management, 114, 395–404.

    Article  Google Scholar 

  12. Mackey, B. G., Nix, H. A., Hutchinson, M. F., Macmahon, J. P., & Fleming, P. M. (1988). Assessing representativeness of places for conservation reservation and heritage listing. Environmental Management, 12, 501–514.

    Article  Google Scholar 

  13. Fairbanks, D. H. K., & Benn, G. A. (2000). Identifying regional landscapes for conservation planning: a case study from KwaZulu-natal, South Africa. Landscape and Urban planning, 50, 237–257.

    Article  Google Scholar 

  14. Blankson, E. J., & Green, B. H. (1991). Use of landscape classification as an essential prerequisite to landscape evaluation. Landscape and Urban planning, 21, 149–162.

    Article  Google Scholar 

  15. Bernert, J. A., Eilers, J. M., Freemark, K. E., & Ribic, C. (1997). A quantitative method for delineating regions: an example for the western corn belt plains ecoregion of the USA. Environmental Management, 21, 405–420.

    Article  Google Scholar 

  16. Martin de Agar, P., de Pablo, C., & Pineda, F. (1995). Mapping the ecological structure of a territory: a case study in Madrid (central Spain). Environmental Management, 19, 345–357.

    Article  Google Scholar 

  17. Haines-Young, R. H. (1992). The use of remotely sensed satellite imagery for landscape classification in Wales (UK). Landscape Ecology, 7, 253–274.

    Article  Google Scholar 

  18. Cohen, W. B., & Goward, S. N. (2004). Landsat's role in ecological applications of remote sensing. Bioscience, 54(6), 535–545.

    Article  Google Scholar 

  19. Quattrochi, D. A., & Luvall, J. C. (Eds.). (2000). Thermal remote sensing in land surface processes. New York: CRC Press.

    Google Scholar 

  20. Barnes, B. V., Pregitzer, K. S., Spies, T. A., & Spooner, V. H. (1992). Ecological forest site classification. Journal of Forestry, 80, 493–498.

    Google Scholar 

  21. Bunce, R. G. H., Barr, C. J., Clarke, R. T., Howard, D. C., & Lane, A. M. J. (1996). Land classification for strategic ecological survey. Journal of Environmental Management, 47, 37–60.

    Article  Google Scholar 

  22. Cleland, D. T., Crow, T. R., Avers, P. E., & Probst, J. P. (1992). Principles of land stratification for delineating ecosystems. In: Taking an ecological approach to management. US Forest Service Watershed and Air Management. Pp. 40-50.

  23. Kirkpatrick, J. B., & Brown, M. J. (1994). A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania. Conservation Biology, 8, 217–224.

    Article  Google Scholar 

  24. Monjeau, J. A., Birney, E. C., Ghermandi, L., Sikes, R. S., Margutti, L., & Phillips, C. J. (1998). Plants, small mammals, and the hierarchical landscape classifications of Patagonia. Landscape Ecology, 13, 285–306.

    Article  Google Scholar 

  25. Nolet, P., Domon, G., & Bergeron, Y. (1995). Potentials and limitations of ecological classifications as a tool for forest management: a case study of disturbed deciduous forests, Québec. Forest Ecology and Management, 78, 85–98.

    Article  Google Scholar 

  26. Burrough, P. A., van Gaans, P. F. M., & MacMillan, R. A. (2000). High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems, 113, 37–52.

    Article  Google Scholar 

  27. Burrough, P. A., Wilson, J. P., van Gaans, P. F. M., & Hansen, A. J. (2001). Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the greater yellowstone area, USA. Landscape Ecology, 16, 523–546.

    Article  Google Scholar 

  28. MacMillan, R. A., Pettapiece, W. W., Nolan, S. C., & Goddard, T. W. (2000). A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, 113, 81–109.

    Article  Google Scholar 

  29. Nadeau, L. B., Li, C., & Hans, H. (2004). Ecosystem mapping in the lower foothills subregion of Alberta: application of fuzzy logic. Forestry Chronicle, 80, 359–365.

    Google Scholar 

  30. Chon, T., Park, Y., & Park, J. H. (2000). Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecological Modelling, 132, 151–166.

    Article  Google Scholar 

  31. Kraft, J., Einax, J. W., & Kowalik, C. (2004). Information theory for evaluating environmental classification systems. Analytical and Bioanalytical Chemistry, 380, 475–483.

    Article  CAS  Google Scholar 

  32. Hargrove, W., & Hoffman, F. (2004). Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environmental Management, 34, S39–S60.

    Article  Google Scholar 

  33. Hutto, J. C., Shelburne, B. V., & Jones, S. M. (1999) Preliminary ecological land classification of the Chauga Ridges region of South Carolina. 114: 385-393.

  34. Rocchini, D., & Ricotta, C. (2007). Are landscapes as crisp as we may think? Ecological Modelling, 204, 535–539.

    Article  Google Scholar 

  35. Cleland, D. T., Avers, P. E., McNab, W. H., Jensen, M. E., Bailey, R. G., King, T., et al. (1997). National hierarchical framework of ecological units. In M. Boyce & A. Haney (Eds.), Ecosystem management applications for sustainable forest and wildlife resources (pp. 181–200). New Haven: Yale University Press.

    Google Scholar 

  36. Habitats Map of Catalonia (2005). Housing and Environment Department of Genarlitat de Catalunya and University of Barcelona, Barcelona. Available form http://mediambient.gencat.net/cat/el_medi/habitats/habitats_cartografia.htm#cd.

  37. Clavero, P., Martin Vide, J., & Raso Nadal, J. M. (1996). Atles climàtic de Catalunya. Termopluviometria, Generalitat de Catalunya (Departament de Politica Territorrial i Obres Públiques), Institut Cartogràfic de Catalunya i Departament de Medi Ambient, Barcelona.

  38. García de Pedraza, L., & Rejia, G. (1994). Tiempo y clima en España. Meteorología de las Autonomías. DOSSAT-2000, Madrid, Spain.

  39. Pons, X. (1998). Manual of MiraMon. Geographic Information System and Remote Sensing Software. (http://www.creaf.uab.es/miramon). Centre de Recerca Ecològica i Aplicacions Forestals (CREAF): Bellaterra; 150.

  40. Eastman, J. R. (1999). IDRISI32. Guide to GIS and image processing. User's Guide, Version I32.01. Worcester: Clark University.

    Google Scholar 

  41. Ninyerola, M., Pons, X., & Roure, J. M. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, 20, 1823–1841.

    Article  Google Scholar 

  42. del Barrio, G., Alvera, B., Puigdefabregas, J., & Diez, C. (1997). Response of high mountain landscape to topographic variables: Central Pyrenees. Landscape Ecology, 12, 95–115.

    Article  Google Scholar 

  43. Burnett, M. R., August, P. V., Brown, J. H., & Killingbeck, K. T. (1998). The influence of geomorphological heterogeneity on biodiversity I. A patch-scale perspective. Conservation Biology, 12, 363–370.

    Article  Google Scholar 

  44. Pfeffer, K., Pebesma, E., & Burrough, P. (2003). Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecology, 18, 759–776.

    Article  Google Scholar 

  45. Pons, X., & Ninyerola, M. (2008). Mapping a topographic global solar radiation model implemented in a GIS and calibrated with ground data. Interna tional Journal of Climate, 63, 105–111.

    Google Scholar 

  46. Pons, X., & Solé-Sugrañes, L. (1994). A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data. Remote Sensing of Environment, 47, 1–14.

    Article  Google Scholar 

  47. Valor, E., Caselles, V., Coll, C., Sánchez, F., Rubio, E., & Sospedra, F. (2000). Simulation of a medium-scale-surface-temperature instrument from Thematic Mapper data. International Journal of Remote Sensing, 21, 3153–3159.

    Article  Google Scholar 

  48. Palà, V., & Pons, X. (1995). Incorporation of relief into geometric corrections based on polynomials. Photogrammetric Engineering and Remote Sensing, 61, 935–944.

    Google Scholar 

  49. ITT Industries Inc. (2006) ENVI version 4.3. http://www.RSInc.com/envi.

  50. Mora, F., & Iverson, L. (2002). A spatially constrained ecological classification: rationale, methodology and implementation. Plant Ecology, 158, 153–169.

    Article  Google Scholar 

  51. Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley-Interscience Publication.

    Google Scholar 

  52. Pons, X., Moré, G., & Serra, P. (2006). Improvements on classification by tolerating no data values. application to a hybrid classifier to discriminate mediterranean vegetation with a detailed legend using multitemporal series of images. In: 2006 IEEE International Geoscience and Remote Sensing Symposium and 27th Canadian Symposium on Remote Sensing. Denver. pp: 192-195.

  53. Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236.

    Article  Google Scholar 

  54. StatSoft Inc. (2001) STATISTICA (data analysis software system), version 6. http://www.statsoft.com.

  55. Jongman, R. H. G., Ter Braak, C. J. F., & van Tongeren, O. F. R. (1995). Data analysis in community and landscape ecology. UK: Cambridge University Press.

    Book  Google Scholar 

  56. Mitchell, S. W., Remmel, T. K., Csillag, F., & Wulder, M. A. (2008). Distance to second cluster as a measure of classification confidence. Remote Sensing of Environment, 112, 2615–2626.

    Article  Google Scholar 

  57. Salski, A. (2007). Fuzzy clustering of fuzzy ecological data. Ecological Informatics, 2, 262–269.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the GIS and Remote Sensing Methods and Applications Research Group of the Autonomous University of Barcelona (2009 SGR 1511), and especially to Gerard Moré for his advice on GIS cluster analysis. We would also like to thank the Applied Geography Group of the Autonomous University of Barcelona for developing this methodology in the High Pyrenees Natural Park (2005-2006PNATAPI).

We would like to express our gratitude to the Catalan Water Agency and to the Department of the Environment and Housing of the Generalitat (Autonomous Government) of Catalonia for their investment policy and the availability of Remote Sensing data, which has made it possible to conduct this study under optimal conditions. Comments from the anonymous reviewers greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Maria Serra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, J.M., Cristobal, J. & Ninyerola, M. A Classification Procedure for Mapping Topo-climatic Conditions for Strategic Vegetation Planning. Environ Model Assess 16, 77–89 (2011). https://doi.org/10.1007/s10666-010-9232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-010-9232-4

Keywords

Navigation