Skip to main content

Advertisement

Log in

Effects of Temperature–Climate Patterns on the Production of Some Competitive Species on Grounds of Modelling

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Climate change has serious effects on the setting up and the operation of natural ecosystems. Small increase in temperature could cause rise in the amount of some species or potential disappearance of others. During our researches, the dispersion of the species and biomass production of a theoretical ecosystem were examined on the effect of the temperature–climate change. The answers of the ecosystems which are given to the climate change could be described by means of global climate modelling and dynamic vegetation models. The examination of the operation of the ecosystems is only possible in huge centres on supercomputers because of the number and the complexity of the calculation. The number of the calculation could be decreased to the level of a PC by considering the temperature and the reproduction during modelling a theoretical ecosystem, and several important theoretical questions could be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baranovic, A., Solic, M., Vucetic, T., & Krstulovic, N. (1993). Temporal fluctuations of zooplankton and bacteria in the middle Adriatic Sea. Marine Ecology Progress Series, 92, 65–75.

    Article  Google Scholar 

  2. Dippner, J. W., Kornilovs, G., & Sidrevics, L. (2000). Long-term variability of mesozooplankton in the Central Baltic Sea. Journal of Marine Systems, 25, 23–31.

    Article  Google Scholar 

  3. Dregelyi-Kiss, A., & Hufnagel, L. (2009). Simulations of Theoretical Ecosystem Growth Model (TEGM) during various climate conditions. Applied Ecology and Environmental Research, 7(1), 71–78.

    Google Scholar 

  4. Felföldy, L. (1981). A vizek környezettana. Általános hidrobiológia. Budapest: Mezőgazdasági Kiadó. Water environmental sciences.

    Google Scholar 

  5. Fischlin, A., Midgley, G. F., Price, J. T., Leemans, R., Gopal, B., Turley, C., et al. (2007). Ecosystems, their properties, goods, and services. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change (pp. 211–272). Cambridge: Cambridge University Press.

    Google Scholar 

  6. Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., et al. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628.

    Article  CAS  Google Scholar 

  7. Friedlingstein, P., Cox, P. M., Betts, R. A., Bopp, L., von Bloh, W., Brovkin, V., et al. (2006). Climate-Carbon Cycle feedback analysis: Results from the C4MIP model incomparison. J. Climate, 19, 3337–3353.

    Article  Google Scholar 

  8. Hufnagel, L., Sipkay, C. S., Drégelyi-Kiss, Á., Farkas, E., Türei, D., Gergócs, V., et al. (2008). Klímaváltozás, Biodiverzitás és közösségökológiai folyamatok kölcsönhatásai. In Z. S. Harnos & L. Csete (Eds.), Klímaváltozás: Környezet-Kockázat-Társadalom (pp. 275–300). Budapest: Szaktudás Kiadó Ház.

    Google Scholar 

  9. Juhász-Nagy, P. (1984). Beszélgetések az ökológiáról. Budapest: Mezõgazdasági Kiadó. Conversation about ecology.

    Google Scholar 

  10. Juhász-Nagy, P. (1986). Egy operatív ökológia hiánya, szükséglete és feladatai (p. 251). Budapest: Akadémiai Kiadó.

    Google Scholar 

  11. Juhász-Nagy, P. (1993). Az eltűnõ sokféleség (A bioszféra-kutatás egy központi kérdése). Budapest: Scientia Kiadó.

    Google Scholar 

  12. Klein Tank, A. M. G., & Coauthors. (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22, 1441–1453.

    Article  Google Scholar 

  13. Parmesan, C., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–583.

    Article  CAS  Google Scholar 

  14. Péczeli, G. (1981). Éghajlattan (pp. 239–257). Budapest: Tankönyvkiadó.

    Google Scholar 

  15. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644.

    Article  Google Scholar 

  16. Pianka, E. R. (1974). Niche overlap and diffuse competition. Proc. Nat. Acad. Sci. U. S. A., 71(5), 2141–2145.

    Article  CAS  Google Scholar 

  17. Précsényi, I. (1995). Alapvetõ kutatásszervezési, statisztikai és projectértékelési módszerek a szupraindividuális biológiában. Debrecen: KLTE.

    Google Scholar 

  18. Reynolds, C. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  19. Sipkay, C. S., Hufnagel, L., Révész, A., & Petrányi, G. (2007). Seasonal dynamics of an aquatic macroinvertebrate assembly (Hydrobiological case study of Lake Balaton No. 2). Applied Ecology and Environmental Research, 5(2), 63–78.

    Google Scholar 

  20. Sipkay, C., Horváth, L., Nosek, J., Oertel, N., Vadadi-Fülöp, C., Farkas, E., et al. (2008). Analysis of climate change scenarios based on modelling of the seasonal dynamics of a Danubian copepod species. Applied Ecology and Environmental Research, 6(4), 101–108.

    Google Scholar 

  21. Spellerberg, I. F. (1991). Monitoring ecological change. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Vadadi-Fülöp, C. S., Türei, D., Sipkay, C. S., Verasztó, C. S., Dregelyi-Kiss, A., & Hufnagel, L. (2008). Comparative assessment of climate change scenarios based on aquatic food web modelling. Environmental Modelling and Assessment, 14(5), 563–576.

    Google Scholar 

Download references

Acknowledgements

This investigation was supported by the projects NKFP 4/037/2001 and OTKA T042583, the VAHAVA project, the Adaptation to Climate Change Research Group of the Hungarian Academy of Sciences and the Department of Mathematics and Informatics, Corvinus University of Budapest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágota Drégelyi-Kiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drégelyi-Kiss, Á., Hufnagel, L. Effects of Temperature–Climate Patterns on the Production of Some Competitive Species on Grounds of Modelling. Environ Model Assess 15, 369–380 (2010). https://doi.org/10.1007/s10666-009-9216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-009-9216-4

Keywords

Navigation