Skip to main content
Log in

Application of System Dynamics on Shallow Multipurpose Artificial Lakes: A Case Study of Detention Pond at Tainan, Taiwan

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This study designs a multipurpose urban shallow artificial lake, including water supply, flood detention, and water environment preservation. It is expected to not only preserve a healthy water environment but to also retain water conservation and flood detention. This study adopts system dynamics (SD) to analyze the relationship between different purposes of water resources utilization. Furthermore, different operation strategies effects can be simulated by SD through a proposed urban multipurpose shallow artificial lake system. The results demonstrate the dynamic effects of strategies managers propose such as demand analysis, inflow control, and water quality improvement in this case study for Taiwan. SD aids lake system prediction and understanding temporally in sequential planning for water supply, environmental preservation, and flood detention. The SD model will hopefully serve as a reference to study different features before artificial lakes constructing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad, S., & Simonovic, S. P. (2000). System dynamics modeling of reservoir operations for flood management. Journal of Computing in Civil Engineering, 14(3), 190–198. doi:10.1061/(ASCE)0887-3801(2000)14:3(190).

    Article  Google Scholar 

  2. Basha, H. A. (1995). Routing equations for detention reservoirs. Journal of Hydraulic Engineering, 121(12), 855–887. doi:10.1061/(ASCE)0733-9429(1995)121:12(885).

    Article  Google Scholar 

  3. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  4. Filippelli, G. M. (2008). The global phosphorus cycle: Past, present, and future. Elements, 4(2), 89–95. doi:10.2113/GSELEMENTS.4.2.89.

    Article  CAS  Google Scholar 

  5. Güneralp, B., & Barlas, Y. (2003). Dynamic modelling of a shallow freshwater lake for ecological and economic sustainability. Ecological Modelling, 167(1–2), 115–138. doi:10.1016/S0304-3800(03)00172-8.

    Article  Google Scholar 

  6. Guo, H. C., Liu, L., & Huang, G. H. (2001). A system dynamics approach for regional environmental planning and management: A study for Lake Erhai Basin. Journal of Environmental Management, 61(1), 93–111. doi:10.1006/jema.2000.0400.

    Article  CAS  Google Scholar 

  7. Ho, C.-C., Yang, C.-C., Chang, L.-C., & Chen, T.-W. (2005). The application of system dynamics modeling to study impact of water resources planning and management in Taiwan. The 23rd International Conference of The System Dynamics Society, Boston, 17–21 July.

  8. Hydrologic Engineering Center. (1966). Reservoir yield, generalized computer program 23-J2-L245. Davis, CA: US Army Corps of Engineers.

    Google Scholar 

  9. Hydrologic Engineering Center. (1975). Hydrologic engineering methods for water resources development, vol. 8, reservoir yield. Davis, CA: US Army Corps of Engineers.

    Google Scholar 

  10. Janssen, M. A. (2001). An exploratory integrated model to assess management of lake eutrophication. Ecological Modelling, 140(1–2), 111–124. doi:10.1016/S0304-3800(01)00260-5.

    Article  CAS  Google Scholar 

  11. Jørgensen, S. E. (1994). Fundamentals of ecological modelling. New York: Elsevier Science.

    Google Scholar 

  12. Matsui, S., Ide, S., & Ando, M. (1995). Lakes and reservoirs: Reflecting waters of sustainable use. Water Science and Technology, 32(7), 221–224. doi:10.1016/0273-1223(96)00068-6.

    Article  Google Scholar 

  13. Mays, L. W., & Tung, Y. K. (1992). Hydrosystems engineering and management. New York: McGraw-Hill.

    Google Scholar 

  14. Nandalal K. D. W., & Simonovic S. P. (2003). Resolving conflicts in water sharing: A systemic approach. Water Resources Research, 39(12), No.1362.

    Google Scholar 

  15. Organisation for Economic Co-operation and Development (OECD). (1982). Eutrophication of waters. OECD report, Paris, p. 154.

  16. Rallison, R. K. (1980). Origin and evolution of the SCS runoff equation. Proceedings of Symposium on Watershed Management, Boise, ID, 21–23 July. New York, NY: American Society of Civil Engineers, pp. 912–924.

  17. Patrick, C. K. (2003). Ecological engineering—Principles and practice. Boca Raton, FL: Lewis.

    Google Scholar 

  18. Philbrick, C. R., & Kitanidis, P. K. (1998). Optimal conjunctive-use operations and plans. Water Resources Research, 34, 1307–1316. doi:10.1029/98WR00258.

    Article  Google Scholar 

  19. Ryan, S. A., Roff, J. C., & Yeats, P. A. (2008). Development and application of seasonal indices of coastal-zone eutrophication. ICES Journal of Marine Science, 65(8), 1469–1474. doi:10.1093/icesjms/fsn121.

    Article  CAS  Google Scholar 

  20. Scher, O., & Thiery, A. (2005). Odonata, amphibia and environmental characteristics in motorway stormwater retention ponds (Southern France). Hydrobiologia, 551, 237–251.

    Article  Google Scholar 

  21. Sehlke, G., & Jacobson, J. (2005). System dynamics modeling of transboundary systems: The Bear River basin model. Ground Water, 43(5), 722–730. doi:10.1111/j.1745-6584.2005.00065.x.

    Article  CAS  Google Scholar 

  22. Shutes, R. B. E. (2001). Artificial wetland and water quality improvement. Environment International, 26(5–6), 441–447. doi:10.1016/S0160-4120(01)00025-3.

    Article  CAS  Google Scholar 

  23. Shutes, R. E., Revitt, D. M., Scholes, L. N. L., Forshaw, M., & Winter, B. (2001). An experimental constructed wetland system for the treatment of highway runoff in the UK. Water Science and Technology, 44(11–12), 571–578.

    CAS  Google Scholar 

  24. Simonovic, S. P., & Fahmy, H. (1999). A new modeling approach for water resources policy analysis. Water Resources Research, 35(1), 295–304. doi:10.1029/1998WR900023.

    Article  Google Scholar 

  25. Simonovic, S. P., & Li, L. (2003). Methodology for assessment of climate change impacts on large flood protection system. Journal of Water Resources Planning and Management, 129(5), 361–371. doi:10.1061/(ASCE)0733-9496(2003)129:5(361).

    Article  Google Scholar 

  26. Sollie, S., Janse, J. H., Mooij, W. M., et al. (2008). The contribution of marsh zones to water quality in Dutch shallow lakes: A modeling study. Environmental Management, 42(6), 1002–1016. doi:10.1007/s00267-008-9121-7.

    Article  Google Scholar 

  27. Stave, K. A. (2003). A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. Journal of Environmental Management, 67(4), 303–313. doi:10.1016/S0301-4797(02)00205-0.

    Article  Google Scholar 

  28. Stefan, H. G., Hondzo, M., Eaton, J. G., & Mccormick, J. H. (1995). Validation of a fish habitat model for lakes. Ecological Modelling, 82(3), 211. doi:10.1016/0304-3800(94)00099-4.

    Article  CAS  Google Scholar 

  29. Weller, C. M., Watzin, M. C., & Wang, D. (1996). Role of wetlands in reducing phosphorus loading to surface water in eight watersheds in the lake Champlain basin. Environmental Management, 20(5), 731–739. doi:10.1007/BF01204144.

    Article  Google Scholar 

  30. Wynn, T. M., & Liehr, S. K. (2001). Development of a constructed subsurface-flow wetland simulation model. Ecological Engineering, 16, 519–536. doi:10.1016/S0925-8574(00)00115-4.

    Article  Google Scholar 

  31. Xu, F. L., Tao, S., Dawson, R. W., Li, P. G., & Cao, J. (2001). Lake ecosystem health assessment: Indicators and methods. Water Research, 35(13), 3157–3167. doi:10.1016/S0043-1354(01) 00040-9.

    Article  CAS  Google Scholar 

  32. Xu, Z. X., Takeuchi, K., Ishidaira, H., et al. (2002). Sustainability analysis for Yellow River water resources using the system dynamics approach. Water Resources Management, 16(3), 239–261. doi:10.1023/A:1020206826669.

    Article  Google Scholar 

  33. Yang, C. C., Chang, L. C., Yeh, C. H., & Ho, C. C. (2008). Application of system dynamics with impact analysis to solve the problem of water shortages in Taiwan. Water Resources Management, 22, 1561–1577.

    Article  Google Scholar 

Download references

Acknowledgments

Wallace Institute was appreciated for its editorial assistance. This study was supported by Water Resources Agency, Ministry of Economic Affairs, Taiwan, R. O. C. The authors would like to thank Prof. HJ Lin, Dr. HC Su, Dr. CC Yang, CC Ho, anonymous reviewers and helpers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hone-Jay Chu.

Appendices

Appendix 1. Model Parameter Value in Water Supply and Flood Detention

Symbol

Definition

Value

Unit

CN

Soil conservation service curve number

88

 

Lake_area

Lake area

50,000

m2

Watershed_Area

Watershed area

1,000,000

m2

Maintain_eco

Eco-suitable depth

0.3

m

Maintain_land

Landscape-suitable depth

1

m

Infi_rate

Infiltration rate

0.15

m/day

Infi_area

Infiltration area

2,000

m2

Max_S

Maximum storage

100,000

m3

Max_Capacity

Maximum detention capacity

100,000

m3

ω

Ration factor

0.8

 

Appendix 2. Model Parameter Value in Environmental Conservation

Symbol

Definition

Value

Unit

Alpha

Light extinction coefficient of water

0.25

 

Beta

Light extinction coefficient of phytoplankton

0.18

 

LightMin

The minimum light intensity

500

kcal/m2

LightMax

The maximum light intensity

4500

kcal/m2

MyMax

Maximum growth rate of phytoplankton

1.5

 

KP

Monod constant of phosphorous uptake

0.2

 

Appendix 3. Model Indicators

  1. 1.

    The water supply indicator is represented by the shortage index (SI) proposed by the US Army Corps of Engineers as [8, 9]:

$$ \text{SI} = \frac{100}{N} \times \sum\limits_{i = 1}^N {\left( {\frac{{\text{Sh}_i }}{{T_i }}} \right)^2 } $$
(C-1)

where N is number of periods; Sh i is volume shortage during period i; and T i is target demand during the period i.

  1. 2.

    The environmental conservation index adopts trophic category (TC). Table 4 lists the trophic category with total phosphorus (TP), defined by the Organization for Economic Co-operation and Development [15].

    Table 4 OECD management limits for TP
  2. 3.

    The detention efficiency (DE) indicator in flood event is represented as:

$$ \text{DE} = \frac{{Q_p - Q_{\text{pb}} }}{{Q_{\text{p} } }} \times 100\% $$
(C-2)

where Qp is peak flow without building the lake and Qpb is peak flow with building the lake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, HJ., Chang, LC., Lin, YP. et al. Application of System Dynamics on Shallow Multipurpose Artificial Lakes: A Case Study of Detention Pond at Tainan, Taiwan. Environ Model Assess 15, 211–221 (2010). https://doi.org/10.1007/s10666-009-9196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-009-9196-4

Keywords

Navigation