Skip to main content
Log in

Selecting Variables for Habitat Suitability of Asellus (Crustacea, Isopoda) by Applying Input Variable Contribution Methods to Artificial Neural Network Models

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This study aimed to compare different methods to analyse the contribution of individual river characteristics to predict the abundance of Asellus (Crustacea, Isopoda). Six methods which provide the relative contribution and/or the contribution profile of the input variables of artificial neural network models were therefore compared: (1) the ‘partial derivatives’ method; (2) the ‘weights’ method; (3) the ‘perturb’ method; (4) the ‘profile’ method; (5) the ‘classical stepwise’ method; (6) the ‘improved stepwise’ method. Consequently, the key variables which affect the habitat preferences of Asellus could be identified. To evaluate the performance of the artificial neural network model, the model predictions were compared with the results of a multiple linear regression analysis. The dataset consisted of 179 samples, collected over a 3-year period in the Zwalm catchment in Flanders, Belgium. Twenty-four environmental variables as well as the log-transformed abundance of Asellus were used in this study. The different contribution methods seemed to give similar results concerning the order of importance of the input variables. Nevertheless, their diverse computation led to differences in sensitivity and stability of the methods and the derived outcomes on the habitat preferences. From an ecological point of view, the environmental variables describing the stream type (width, depth, stream order and distance to mouth) were the most significant variables for Asellus in the Zwalm catchment during the period 2000–2002 for all applied methods. Indirectly, one can conclude that the water quality is not the limiting factor for the survival of Asellus in the Zwalm catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adriaenssens, V., Goethals, P. L. M., & De Pauw, N. (2006). Fuzzy knowledge-based models for prediction of Asellus and Gammarus in watercourses in Flanders (Belgium). Ecological Modelling, 195, 3–10. doi:10.1016/j.ecolmodel.2005.11.043.

    Article  Google Scholar 

  2. Bayerisches Landesamt für Wasserwirtschaft, Ökologische typisierung der aquatischen Makrofauna. Inforamtionsberichte des Bayerischen Landesamtes für Wasserwirtschaft, Heft 4/96, 1996.

  3. Chambers, M. R. (1977). A comparison of the population ecology of Asellus aquaticus (L.) and Asellus meridianus Rac. in the reed beds of the Tjeukemee. Hydrobiologia, 53(2), 147–154. doi:10.1007/BF00029293.

    Article  Google Scholar 

  4. Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. London: Pion.

    Google Scholar 

  5. De Pauw, N., & Vanhooren, G. (1983). Method for biological assessment of watercourses in Belgium. Hydrobiologia, 100, 153–168. doi:10.1007/BF00027428.

    Article  Google Scholar 

  6. De Pauw, N., Lambert, V., Van Kenhove, A., & bij De Vaate, A. (1994). Performance of two artificial substrate samplers for macroinvertebrates in biological monitoring of large and deep rivers and canals in Belgium and the Netherlands. Environmental Monitoring and Assessment, 30, 25–47. doi:10.1007/BF00546198.

    Article  Google Scholar 

  7. Dedecker, A. P., Goethals, P. L. M., & De Pauw, N. (2002). Comparison of artificial neural network (ANN) model development methods for prediction of macroinvertebrate communities in the Zwalm river basin in Flanders, Belgium. TheScientificWorldJournal, 2, 96–104. doi:10.1100/tsw.2002.79.

    Article  Google Scholar 

  8. Dedecker, A. P., Goethals, P. L. M., Gabriels, W., & De Pauw, N. (2004). Optimisation of artificial neural network (ANN) model design for prediction of macroinvertebrate communities in the Zwalm river basin (Flanders, Belgium). Ecological Modelling, 174, 161–173. doi:10.1016/j.ecolmodel.2004.01.003.

    Article  CAS  Google Scholar 

  9. Dedecker, A. P., Goethals, P. L. M., D’heygere, T., Gevrey, M., Lek, S., & De Pauw, N. (2005). Application of artificial neural network models to analyse the relationships between Gammarus pulex L. (Crustacea, Amphipoda) and river characteristics. Environmental Monitoring and Assessment, 111, 223–241. doi:10.1007/s10661-005-8221-6.

    Article  CAS  Google Scholar 

  10. D'heygere, T., Goethals, P. L. M., & De Pauw, N. (2003). Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates. Ecological Modelling, 160, 291–300. doi:10.1016/S0304-3800(02)00260-0.

    Article  Google Scholar 

  11. D'heygere, T., Goethals, P. L. M., & De Pauw, N. (2006). Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks. Ecological Modelling, 195, 20–29. doi:10.1016/j.ecolmodel.2005.11.005.

    Article  Google Scholar 

  12. Dimopoulos, Y., Bourret, P., & Lek, S. (1995). Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters, 2, 1–4. doi:10.1007/BF02309007.

    Article  Google Scholar 

  13. Dimopoulos, I., Chronopoulos, J., Chronopoulou Sereli, A., & Lek, S. (1999). Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece). Ecological Modelling, 120, 157–165. doi:10.1016/S0304-3800(99)00099-X.

    Article  CAS  Google Scholar 

  14. Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49. doi:10.1017/S0376892997000088.

    Article  Google Scholar 

  15. Gabriels, W., Goethals, P. L. M., & De Pauw, N. (2002). Prediction of macroinvertebrate communities in sediments of Flemish watercourses based on artificial neural networks. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie, 28(2), 777–780.

    Google Scholar 

  16. Garson, G. D. (1991). Interpreting neural-network connection weights. Artificial Intelligence Expert, 6, 47–51.

    Google Scholar 

  17. Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160, 249–264. doi:10.1016/S0304-3800(02)00257-0.

    Article  Google Scholar 

  18. Gledhill, T., Sutcliffe, D.W., & Williams, W.D. (1976) A revised key to the British species of Crustacea: Malacostraca occurring in fresh water, with notes on their ecology and distribution. Freshwater Biological Association, Scientific Publication No. 32.

  19. Goethals, P. L. M., & De Pauw, N. (2001). Development of a concept for integrated ecological river assessment in Flanders, Belgium. Journal of Limnology, 60(1), 7–16.

    Google Scholar 

  20. Goethals, P. L. M., Gasparyan, K., & De Pauw, N. (2001). River restoration simulations by ecosystem models predicting aquatic macroinvertebrate communities based on J48 classification trees. Communications in Agricultural and Applied Biological Sciences, Ghent University, 66(4), 213–217.

    CAS  Google Scholar 

  21. Goethals, P. L. M., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. (2007). Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41, 491–508. doi:10.1007/s10452-007-9093-3.

    Article  Google Scholar 

  22. Goh, A. T. C. (1995). Back-propagation neural networks for modelling complex systems. Artificial Intelligence in Engineering, 9, 143–151. doi:10.1016/0954-1810(94)00011-S.

    Article  Google Scholar 

  23. Hawkes, H. A. (1979). Invertebrates as indicators of river water quality. In A. James & L. Evinson (Eds.), Biological indicators of water quality. Hoboken: Wiley.

    Google Scholar 

  24. Hawkes, H. A., & Davies, L. J. (1971). Some effects of organic enrichment on benthic invertebrate communities in stream riffles. In E. Duffey & A. Watt (Eds.), The scientific management of animal and plant communities for conservation, pp. 271–299. Oxford: Blackwell.

    Google Scholar 

  25. Hoang, H., Recknagel, F., Marshall, J., & Choy, S. (2001). Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecological Modelling, 146, 195–206. doi:10.1016/S0304-3800(01)00306-4.

    Article  Google Scholar 

  26. Institut belge de Normalisation. (1984). Biological water quality: determination of the biotic index based on aquatic macroinvertebrates. Norme, IBN, Belge T 92-402 (in Dutch and French).

  27. Lek, S., & Guégan, J. F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling, 120, 65–73. doi:10.1016/S0304-3800(99)00092-7.

    Article  Google Scholar 

  28. Lek, S., Belaud, A., Dimopoulos, I., Lauga, J., & Moreau, J. (1995). Improved estimation, using neural networks, of the food consumption of fish populations. Marine & Freshwater Research, 46, 1229–1236. doi:10.1071/MF9951229.

    Article  Google Scholar 

  29. Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., & Aulagnier, S. (1996). Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90, 39–52. doi:10.1016/0304-3800(95)00142-5.

    Article  Google Scholar 

  30. Lek, S., Belaud, A., Baran, P., Dimopoulos, I., & Delacoste, M. (1996). Role of some environmental variables in trout abundance models using neural networks. Aquatic Living Resources, 9, 23–29. doi:10.1051/alr:1996004.

    Article  Google Scholar 

  31. MacNeil, C., Dick, J. T. A., Bigsby, E., Elwood, R. W., Montgomery, W. I., Gibbins, C. N., et al. (2002). The validity of the Gammarus:Asellus ratio as an index of organic pollution: abiotic and biotic influences. Water Research, 36(2), 75–84. doi:10.1016/S0043-1354(01)00218-4.

    Article  CAS  Google Scholar 

  32. Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: The need to account for prevalence. Journal of Applied Ecology, 38, 921–931. doi:10.1046/j.1365-2664.2001.00647.x.

    Article  Google Scholar 

  33. Marshall, J., Hoang, H., Choy, S., & Recknagel, F. (2002). Relationships between habitat properties and the occurrence of macroinvertebrates in Queensland streams (Australia) discovered by a sensitivity analysis with artificial neural networks. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie, 28, 1415–1419.

    Google Scholar 

  34. Moon, H. P., & Harding, P. T. (1981). A preliminary review of the occurrence of Asellus (Crustacea: Isopoda) in the British Isles. Huntingdon: Biological Records Centre.

    Google Scholar 

  35. Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154, 135–150. doi:10.1016/S0304-3800(02)00064-9.

    Article  Google Scholar 

  36. Park, Y. S., Kwak, I. S., Chon, T. S., Kim, J. K., & Jorgensen, S. E. (2001). Implementation of artificial neural networks in patterning and prediction of energy in response to temporal dynamics of benthic macroinvertebrate communities in streams. Ecological Modelling, 146, 143–157. doi:10.1016/S0304-3800(01)00302-7.

    Article  Google Scholar 

  37. Park, Y. S., Céréghino, R., Compin, A., & Lek, S. (2003). Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecological Modelling, 160, 265–280. doi:10.1016/S0304-3800(02)00258-2.

    Article  Google Scholar 

  38. Park, Y. S., Verdonschot, P. F. M., Chon, T. S., & Lek, S. (2003). Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. Water Research, 37, 1749–1758. doi:10.1016/S0043-1354(02)00557-2.

    Article  CAS  Google Scholar 

  39. Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenberg, D. M. (1997). The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16(4), 833–852. doi:10.2307/1468175.

    Article  Google Scholar 

  40. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagation errors. Nature, 323, 533–536. doi:10.1038/323533a0.

    Article  Google Scholar 

  41. Scardi, M., & Harding, L. W. (1999). Developing an empirical model of phytoplankton primary production: A neural network case study. Ecological Modelling, 120(2–3), 213–223. doi:10.1016/S0304-3800(99)00103-9.

    Article  Google Scholar 

  42. Schleiter, I. M., Borchardt, D., Wagner, R., Dapper, T., Schmidt, K. D., Schmidt, H. H., et al. (1999). Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural networks. Ecological Modelling, 120(2–3), 271–286. doi:10.1016/S0304-3800(99)00108-8.

    Article  Google Scholar 

  43. Schleiter, I. M., Obach, M., Borchardt, D., & Werner, H. (2001). Bioindication of chemical and hydromorphological habitat characteristics with benthic macro-invertebrates based on artificial neural networks. Aquatic Ecology, 35, 147–158. doi:10.1023/A:1011433529239.

    Article  CAS  Google Scholar 

  44. Segurado, P., Araújo, M. B., & Kunin, W. E. (2006). Consequences of spatial autocorrelation for niche-based models. Journal of Applied Ecology, 43, 433–444. doi:10.1111/j.1365-2664.2006.01162.x.

    Article  Google Scholar 

  45. Steenbergen, H.A. (1993). Macrofauna-atlas of North Holland: Distribution maps and responses to environmental factors of aquatic invertebrates, Haarlem.

  46. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). River continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137. doi:10.1139/f80-017.

    Article  Google Scholar 

  47. Verdonschot, P. F. M. (1990). Ecological characterization of surface waters in the Province of Overijssel (the Netherlands). Leersum: Research Institute for Nature Management.

    Google Scholar 

  48. Wagner, R., Dapper, T., & Schmidt, H. H. (2000). The influence of environmental variables on the abundance of aquatic insects: A comparison of ordination and artificial neural networks. Hydrobiologia, 422–423, 143–152. doi:10.1023/A:1017047022207.

    Article  Google Scholar 

  49. Walley, W. J., & Fontama, V. N. (1998). Neural network predictors of average score per taxon and number of families at unpolluted river sites in Great Britain. Water Research, 32(3), 613–622. doi:10.1016/S0043-1354(97)00274-1.

    Article  CAS  Google Scholar 

  50. Whitehurst, I.T. (1988). Factors affecting the Gammarus to Asellus ratio in unpolluted and polluted waters. Ph.D. dissertation, Brighton Polytechnic, Brighton, England.

  51. Wright, J. F. (1995). Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology, 20, 181–197. doi:10.1111/j.1442-9993.1995.tb00531.x.

    Article  Google Scholar 

Download references

Acknowledgements

The first author is a grant holder of the Special Research Fund (BOF) of Ghent University, while the second author is a grant holder of the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT). Co-operation between Ghent University and CNRS-University Paul Sabatier was promoted via the Flemish Government (Administration of Higher Education and Scientific Research) in the context of the TOURNESOL 2003 programme (project T-2003.01). The authors also wish to thank two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ans M. Mouton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouton, A.M., Dedecker, A.P., Lek, S. et al. Selecting Variables for Habitat Suitability of Asellus (Crustacea, Isopoda) by Applying Input Variable Contribution Methods to Artificial Neural Network Models. Environ Model Assess 15, 65–79 (2010). https://doi.org/10.1007/s10666-009-9192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-009-9192-8

Keywords

Navigation