Skip to main content

Advertisement

Log in

Spatiotemporal Modeling of Ambient Sulfur Dioxide Concentrations in Rural Western Canada

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The provinces of Saskatchewan, Alberta, and British Columbia are major oil- and gas-producing regions in western Canada. With increasing oil and gas production activities, there has been a growing concern of the effect of oil and gas industry emissions on health. Nevertheless, lack of proper tools to estimate the exposure to these emissions has been a hindrance to epidemiological studies and risk assessment. This paper presents a spatiotemporal modeling approach to estimating ambient sulfur dioxide (SO2) levels based on environmental monitoring data (N = 10,295), which were collected at rural sites (591 per month on average) of this region from June 1, 2001 to May 31, 2002. Based on the model, illustrative maps consistently revealed high and low SO2 concentration sub-regions. The sub-regions with elevated SO2 concentrations had increased levels during the winter months from December 2001 to March 2002 and then decreased during the spring of 2002. This statistical modeling approach may help researchers estimate the SO2 levels within the study area for their epidemiological studies or risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnett, A. G., Williams, G. M., Schwartz, J., Neller, A. H., Best, T. L., Petroeschevsky, A. L., et al. (2005). Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. Amer Respir Crit Care Med, 171, 1272–1278. doi:10.1164/rccm.200411-1586OC.

    Article  Google Scholar 

  2. Biggeri, A., Baccini, M., Bellini, P., & Terracini, B. (2005). Meta-analysis of the Italian Studies of Short-term Effects of Air Pollution (MISA), 1990–1999. International Journal of Occupational and Environmental Health, 11, 107–122.

    CAS  Google Scholar 

  3. Brook, J. R., Maker, P. A., Moran, M. D., Shepherd, M. F., Vet, R. J., Dann, T. F., et al. (2001). Precursor contributions to ambient fine particulate matter in Canada. Environment Canada. Retrieved April 4, 2008 from http://www.msc-smc.ec.gc.ca/saib/smog/pm_full/pm2_5_full_pg14_e.html#4.4.

  4. Brook, R. D., Brook, J. R., & Rajagopalan, S. (2003). Air pollution: the “heart” of the problem. Current Hypertension Reports, 5, 32–39. doi:10.1007/s11906-003-0008-y.

    Article  Google Scholar 

  5. Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. Lancet, 360, 1233–1242. doi:10.1016/S0140-6736(02)11274-8.

    Article  CAS  Google Scholar 

  6. Burstyn, I., Senthilselvan, A., Kim, H.-M., Pietroniro, E., Waldner, C., & Cherry, N. M. (2007). Industrial sources influence air concentrations of hydrogen sulfide and sulfur dioxide in rural areas of western Canada. AWMA Journal, 57, 1241–1250.

    CAS  Google Scholar 

  7. Calder, C. A. (2008). A dynamic process convolution approach to modeling ambient particular matter concentrations. Environmetrics, 19, 39–48. doi:10.1002/env.852.

    Article  CAS  Google Scholar 

  8. Calder, C. A., Holloman, C., & Higdon, D. (2002). Exploring space-time structure in ozone concentration using a dynamic process convolution model. In Case Studies in Bayesian Statistics (vol. 6, pp. 165–176). New York: Springer.

    Google Scholar 

  9. Chew, F. T., Goh, D. Y., Ooi, B. C., Saharom, R., Hui, J. K., & Lee, B. W. (1999). Association of ambient air-pollution levels with acute asthma exacerbation among children in Singapore. Allergy, 54, 320–329. doi:10.1034/j.1398-9995.1999.00012.x.

    Article  CAS  Google Scholar 

  10. Dales, R., Burnnet, R. T., Smith-Doiron, M., Stieb, D. M., & Brook, J. R. (2004). Air pollution and sudden infant death syndrome. Pediatrics, 113, 628–631. doi:10.1542/peds.113.6.e628.

    Article  Google Scholar 

  11. Davies, M., Prasad, S., Gieni, W., Vanderheydan, M., Vatcher, C., Whiteley, S., et al. (2006). Air-concentration monitoring technology, methods and overview. In Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities: Research appendices. The Western Interprovincial Scientific Studies Association. Pp 3.1–3.61.

  12. Echer, M. D., & Gelfand, A. E. (1999). Bayesian modeling and inference for geometrically anisotropic spatial data. Mathematical Geology, 31, 67–83.

    Google Scholar 

  13. Environmental Systems Research Institute, Inc. (ESRI). (1999). ArcView 3.2. Redlands, CA. ESRI, Inc. 2005. ArcGIS 9.1.

  14. Farwell, S., Chatham, W. H., & Barinaga, C. J. (1987). Performance characterization and optimization of the AgNO3-filter/FMA Fluorometric method for atmospheric H2S measurements. Journal of the Air Pollution Control Association, 37, 1052–1059.

    CAS  Google Scholar 

  15. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 129–133.

    Google Scholar 

  16. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  Google Scholar 

  17. Herbarth, O., Fritz, G., Krumbiegel, P., Diez, U., Franck, U., & Richter, M. (2001). Effect of sulfur dioxide and particulate pollutants on bronchitis in children—a risk analysis. Environmental Toxicology, 16, 269–276. doi:10.1002/tox.1033.

    Article  CAS  Google Scholar 

  18. Higdon, D. (1998). A process-convolution approach to modeling temperatures in the north Atlantic Ocean. J Environ Ecol Stat, 5, 173–190. doi:10.1023/A:1009666805688.

    Article  Google Scholar 

  19. Higdon, D. (2002). Space and space-time modeling using process convolutions. In C. Anderson, V. Barnett, P. C. Chatwin, & A.H. EI-Shaarawi (Eds.), Quantitative methods for current environmental issues (pp. 37–56). New Jersey: Springer.

    Google Scholar 

  20. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 34–45.

    Google Scholar 

  21. Kan, H. D., & Chen, B. H. (2003). Air Pollution and daily mortality in Shanghai: a time series study. Archives of Environmental Health, 58, 360–367.

    Google Scholar 

  22. Kan, H. D., Jia, I., & Chen, B. H. (2004). The association of daily diabetes mortality and outdoor air Pollution in Shanghai, China. Journal of Environmental Health, 67, 21–25.

    CAS  Google Scholar 

  23. Koren, H. S. (1995). Associations between criteria air pollutants and asthma. Environmental Health Perspectives, 103(Suppl. 61995), 235–242. doi:10.2307/3432379.

    Article  CAS  Google Scholar 

  24. Kyriakidis, P. C., & Journel, A. G. (1999). Geostatistical space-time models: a review. Mathematical Geology, 31, 651–683. doi:10.1023/A:1007528426688.

    Article  Google Scholar 

  25. Lawther, P. J., Waller, R. E., & Henderson, M. (1970). Air pollution and exacerbations of bronchitis. Thorax, 25, 525–539.

    Article  CAS  Google Scholar 

  26. Lee, J., & Berger, J. O. (2003). Space—time modeling of vertical ozone profiles. Environmetrics, 14, 617–639.

    Article  CAS  Google Scholar 

  27. Lin, M., Chen, Y., Burnett, R. T., Villeneuve, P. J., & Krewski, D. (2003). Effect of short-term exposure to gaseous pollution on asthma hospitalization in children: a bi-directional case-crossover analysis. Journal of Epidemiology and Community Health, 57, 50–55. doi:10.1136/jech.57.1.50.

    Article  CAS  Google Scholar 

  28. Lin, C. A., Pereira, L. A. A., Nishioka, D. C., Conceição, G. M. S., Braga, A. L. F., & Saldiva, P. H. N. (2004). Air pollution and neonatal deaths in São Paulo, Brazil. Neonatal deaths and air pollution. Brazilian Journal of Medical and Biological Research, 37, 765–770. doi:10.1590/S0100-879X2004000500019.

    Article  CAS  Google Scholar 

  29. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  30. Liu, S., Krewski, D., Shi, Y., Chen, Y., & Burnett, R. T. (2003). Association between gaseous ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada. Environmental Health Perspectives, 111, 1773–1778.

    CAS  Google Scholar 

  31. Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325–337. doi:10.1023/A:1008929526011.

    Article  Google Scholar 

  32. Martin, A. E. (1964). Mortality and morbidity statistics and air pollution. Proceedings of the Royal Society of Medicine, 57, 969–975.

    CAS  Google Scholar 

  33. Mateu, J., Montes, F., & Fuentes, M. (2003). Recent advances in space-time statistics with applications to environmental data: an overview. Journal of Geophysical Research, 108(D24), 8774. doi:101029/2003JD003819.

    Article  Google Scholar 

  34. McManus, M. S., Koenig, J. Q., Altman, L. C., & Pierson, W. E. (1989). Pulmonary effects of sulfur dioxide exposure and ipratropium bromide pretreatment in adults with nonallergic asthma. The Journal of Allergy and Clinical Immunology, 3, 19–626.

    Google Scholar 

  35. Meinhold, R. J., & Singpurwalla, N. R. (1983). Understanding the Kalman Filter. The American Statistician, 37, 123–127. doi:10.2307/2685871.

    Article  Google Scholar 

  36. R Development Core Team. (2006). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved April 4, 2008 from http://www.R-project.org.

  37. Ribeiro, J. R., & Diggle, P. J. (2001). geoR: a package for geostatistical analysis. R-NEWS, 1(2).

  38. Scott, H. M., Soskolne, C. L., Martin, S. W., Ellehoj, E. A., Coppock, R. W., Guidotti, T. L., et al. (2003a). Comparison of two atmospheric-dispersion models to assess farm-site exposure to sour-gas processing plant emissions. Preventive Veterinary Medicine, 57, 15–34. doi:10.1016/S0167-5877(02)00207-6.

    Article  Google Scholar 

  39. Scott, H. M., Soskolne, C. L., Martin, S. W., Shoukri, M. M., Lissemore, T. L., Coppock, R. W., et al. (2003b). Air emissions from sour-gas processing plants and dairy-cattle reproduction in Alberta, Canada. Preventive Veterinary Medicine, 57, 69–95. doi:10.1016/S0167-5877(02)00208-8.

    Article  CAS  Google Scholar 

  40. Spiegelhalter, D., Thomas, A., & Best, N. (2007). WinBUGS User Manual Version 1.4.3. MRC Biostatistics Unit, Institute of Public Health, Imperial College, London, UK.

  41. Tang, H., Brassard, B., Brassard, R., & Peake, E. (1997). A new passive sampling system for monitoring SO2 in the atmosphere. Field Analytical Chemistry & Technology, 1, 307–314. doi:10.1002/(SICI)1520-6521(1997)1:5<307::AID-FACT6>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  42. Timonen, K. L., & Pekkanen, J. (1997). Air pollution and respiratory health among children with asthmatic or cough symptoms. American Journal of Respiratory and Critical Care Medicine, 156, 546–552.

    CAS  Google Scholar 

  43. Wong, G. W., Ko, F. W., Lau, T. S., Li, S. T., Hui, D., Pang, S. W., et al. (2001). Temporal relationship between air pollution and hospital admissions for asthmatic children in Hong Kong. Clinical and Experimental Allergy, 31, 565–569. doi:10.1046/j.1365-2222.2001.01063.x.

    Article  CAS  Google Scholar 

  44. Zeger, S. L., Thomas, D., Dominici, F., Samet, J. M., Schwartz, J., Dockery, D., et al. (2000). Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environmental Health Perspectives, 108, 419–426. doi:10.2307/3454382.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is part of the M.Sc. thesis of Shihe Fan, who received partial financial support from grants to A. Senthilselvan. The authors would like to thank The Western Interprovincial Scientific Studies Association for providing the SO2 data. Igor Burstyn was supported by salary awards from the Canadian Institutes for Health Research and the Alberta Heritage Foundation for Medical Research (population health investigator).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambikaipakan Senthilselvan.

Appendix

Appendix

Assume that our interest is to predict SO2 for August 2001 at the point S = (s 1, s 2). From the Eq. 4a, the predicted value of log-transformed SO2 concentration (\(\hat Y_{\left( {s,t} \right)} \)) at S at time t = 3 becomes

$$\ifmmode\expandafter\hat\else\expandafter\^\fi{Y}_{{{\left( {s,3} \right)}}} = {\left( {\ifmmode\expandafter\hat\else\expandafter\^\fi{x}_{{_{1} }} \times \ifmmode\expandafter\hat\else\expandafter\^\fi{k}_{{_{1} }} + \ifmmode\expandafter\hat\else\expandafter\^\fi{x}_{{_{2} }} \times \ifmmode\expandafter\hat\else\expandafter\^\fi{k}_{{_{2} }} + \ldots + \ifmmode\expandafter\hat\else\expandafter\^\fi{x}_{{_{{64}} }} \times \ifmmode\expandafter\hat\else\expandafter\^\fi{k}_{{_{{64}} }} } \right)} + \ifmmode\expandafter\hat\else\expandafter\^\fi{\mu }_{3}$$

where \({\mathop x\limits^ \wedge }_{{_{1} }} ,{\mathop x\limits^ \wedge }_{{_{2} }} ,...{\text{ }}{\mathop x\limits^ \wedge }_{{_{{64}} }}\) correspond to the latent variables at the supporting sites as exemplified in the fourth column of Table 4 for August 2001 (t = 3) with all 64 elements, \(\hat \mu _3 {\text{ = 0}}{\text{.03}}\) (mean for August 2001 (t = 3) taken from Table 2), and \(\hat k_{_1 } ,\hat k_{_2 } , \ldots ,{\text{and}}\,\hat k_{_{64} } \) correspond to the kernel elements, which are a function of the distance from each supporting site ω 1, ω 2,…,ω 64 (defined in the manuscript) to the point S = (s 1, s 2)

For example, \(\hat k_{_1 } \)is a bivariate Gaussian kernel function with mean 0 and standard deviation 200 km (determined from semivariograms in the manuscript) and is given by the equation

$$\ifmmode\expandafter\hat\else\expandafter\^\fi{k}_{{_{1} }} = \frac{1}{{2\pi \sigma ^{2} }}\exp {\left[ { - \frac{{d_{{_{1} }} ^{2} }}{{2\sigma ^{2} }}} \right]} = \frac{1}{{2\pi \times 200^{2} }}\exp {\left[ { - \frac{{{\left( {s_{1} - \omega _{{_{{11}} }} } \right)}^{2} + {\left( {s_{2} - \omega _{{_{{12}} }} } \right)}^{2} }}{{2 \times 200^{2} }}} \right]}$$

where d 1 is the Euclidian distance from the point S = (s 1, s 2) to the supporting site ω 1 = (ω 11, ω 12)

The concentration of SO2 at the point S for August 2001 will be equal to \(e^{\hat Y_{\left( {s,3} \right)} } \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, S., Burstyn, I. & Senthilselvan, A. Spatiotemporal Modeling of Ambient Sulfur Dioxide Concentrations in Rural Western Canada. Environ Model Assess 15, 137–146 (2010). https://doi.org/10.1007/s10666-008-9184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9184-0

Keywords

Navigation