Skip to main content

Advertisement

Log in

Developing Alternative Forest Management Planning Strategies Incorporating Timber, Water and Carbon Values: An Examination of their Interactions

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Currently, the integration of carbon and water values of forest ecosystems into forest management planning models has become increasingly important in sustainable forest management. This study focuses on developing a multiple-use forest management planning model to examine the interactions of timber and water production as well as net carbon sequestration in a forest ecosystem. Each forest value is functionally linked to stand structure and quantified economically. A number of forest management planning strategies varying in the amount of water, carbon, and timber targets and flows as constraints are developed and implemented in a linear programming (LP) environment. The outputs of each strategy are evaluated with a number of performance indicators such as standing timber volume, ending forest inventory, area harvested, and net present value (NPV) of water, timber, and carbon over time. Results showed that the cycling time of forest stands for renewal has important implications for timber, water, and carbon values. The management strategies indicated that net carbon sequestration can be attained at a significant cost in terms of foregone timber harvest and financial returns. The standing timber volumes and ending forest inventories were among the most important factors determining whether the forest constitutes a net carbon sink or source. Finally, the interactions among the forest values were generally found to be complementary, yet sometimes contradictory (i.e., negatively affecting each other), depending on the assumed relationship between forest values and stand structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Apps, M. J., Kurz, W. A., Beukema, S. J., & Bhatti, J. S. (1999). Carbon budget of the Canadian forest product sector. Environmental Science & Policy, 2, 25–41. DOI 10.1016/S1462-9011(99)00006-4.

    Article  CAS  Google Scholar 

  2. Asan, Ü. (1999). Orman Kaynaklarının Çok Amaçlı Kullanımı ve Planlama Sistemleri. Ormanların Çok Amaçlı Planlanması Toplantısı, 5–6 May, Bolu-Türkiye, 33–40.

  3. Asan, Ü., Destan, S. & Özkan, U. Y. (2002). Istanbul korularının karbon depolama, oksijen üretimi ve toz tutma kapasitesinin kestirilmesi. Orman Amenajamanında Kavramsal Açılımlar ve Yeni Hedefler Sempozyumu, Bildiriler Kitabı, Istanbul-Türkiye. 194–202.

  4. Backéus, S., Wikström, P., & Lämås, T. (2005). A model for regional analysis of carbon sequestration and timber production. Forest Ecology and Management, 216, 28–40. DOI 10.1016/j.foreco.2005.05.059.

    Article  Google Scholar 

  5. Başkent, E. Z., & Jordan, G. A. (2002). Forest landscape (ecosystems) management with simulated annealing. Forest Ecology and Management, 165/1–3, 29–45. DOI 10.1016/S0378-1127(01)00654-5.

    Article  Google Scholar 

  6. Baskent, E. Z., & Keles, S. (2005). Spatial forest planning: A review. Ecological Modelling, 188, 145–173. DOI 10.1016/j.ecolmodel.2005.01.059.

    Article  Google Scholar 

  7. Bateman, I. J., & Lovett, A. A. (2000). Estimating and valuing the carbon sequestered in softwood and hardwood trees, timber products and forest soils in Wales. Journal of Environmental Management, 60, 301–323. DOI 10.1006/jema.2000.0388.

    Article  Google Scholar 

  8. Bertomeu, M., & Romero, C. (2001). Managing forest biodiversity: A zero–one goal programming approach. Agricultural Systems, 68, 197–213. DOI 10.1016/S0308-521X(01)00007-5.

    Article  Google Scholar 

  9. Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, 3–23. DOI :10.1016/0022-1694(82)90117-2.

    Article  Google Scholar 

  10. Cannell, M. G. R. (1999). Growing trees to sequester carbon in the UK: Answers to some common questions. Forestry, 72(3), 237–247. DOI 10.1093/forestry/72.3.237.

    Article  Google Scholar 

  11. Carus, S. (1999). Growth and yield of even-aged oriental beech. PhD thesis, Istanbul University, Faculty of Forestry, Istanbul-Turkey.

  12. Church, R. L., Murray, A. T., & Weintraub, A. (1998). Locational issues in forest management. Location Science, 6, 137–153. DOI 10.1016/S0966-8349(98)00051-5.

    Article  Google Scholar 

  13. Creedy, J., & Wurzbacher, A. D. (2001). The economic value of a forested catchment with timber, water and carbon sequestration benefits. Ecological Economics, 38, 71–83. DOI 10.1016/S0921-8009(01)00148-3.

    Article  Google Scholar 

  14. Diaz‑Balteiro, L., & Romero, C. (2003). Forest management optimisation models when carbon captured is considered: A goal programming approach. Forest Ecology and Management, 174, 447–457. DOI 10.1016/S0378-1127(02)00075-0.

    Article  Google Scholar 

  15. Enderlein, R., & Bernardini, F. (2005). Nature for water: Ecosystem services and water management. Natural Resources Forum, 29, 253–255. DOI 10.1111/j.1477-8947.2005.00135.x.

    Article  Google Scholar 

  16. Ercanlı, I. (2003). Construction of variable density table for oriental spruce in Artvin forest enterprise. Msc thesis, Karadeniz Technical University, Faculty of Forestry, Trabzon-Turkey, 93 p.

  17. Ferguson, I. S. (1999). Sustainable forest management. Oxford: Oxford University Press 176 p.

    Google Scholar 

  18. Field, R. C., Dress, P. E., & Fortson, J. C. (1980). Complementary linear and goal programming procedures for timber harvest scheduling. Forest Science, 26, 121–133.

    Google Scholar 

  19. Görcelioğlu, E. (1992). Havzalarda Orman ve Otlak Alanları Amenajmanının Su Verimine ve Kalitesine Etkileri, İ.Ü. Orman Fakültesi Dergisi, Seri B, 42(1–2), 17–30.

    Google Scholar 

  20. Haight, R. G., Monserui, R. A., & Chew, J. D. (1992). Optimal harvesting with stand density targets: Managing Rocky Mountain Conifer Stands for multiple forest outputs. Forest Science, 38, 554–574.

    Google Scholar 

  21. Hoen, H. F., & Solberg, B. (1994). Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. Forest Science, 40, 429–451.

    Google Scholar 

  22. Hof, J. G., & Bevers, M. (2000). Optimal timber harvest scheduling with spatially defined sediment objectives. Canadian Journal of Forest Research, 30(9), 1494–1500. DOI 10.1139/cjfr-30-9-1494.

    Article  Google Scholar 

  23. Hof, J. G., Pickens, J. B., & Barlett, E. T. (1986). A maxmin approach to non-declining yield timber harvest scheduling problems. Forest Science, 32, 663–666.

    Google Scholar 

  24. Hof, J. G., & Raphael, M. G. (1993). Some mathematical programming approaches for optimizing timber age–class distributions to meet multispecies wildlife populations. Canadian Journal of Forest Research, 23, 828–834. DOI 10.1139/x93-107.

    Article  Google Scholar 

  25. Hoganson, H. M., & McDill, M. E. (1993). More on forest regulation: An LP perspective. Forest Science, 39, 321–347.

    Google Scholar 

  26. Hornbeck, J. W., Adams, M. B., Corbett, E. S., Verry, E. S., & Lynch, J. A. (1993). Long – term impacts of forest treatments on water yield: A summary for northeastern USA. Journal of Hydrology, 150, 323–344. DOI 10.1016/0022-1694(93)90115-P.

    Article  Google Scholar 

  27. Huston, M., & Marland, G. (2003). Carbon management and biodiversity. Journal of Environmental Management, 67, 77–86 Medline DOI 10.1016/S0301-4797(02)00190-1.

    Article  Google Scholar 

  28. Johnson, K. N., & Scheurman, H. L. (1977). Techniques for prescribing optimal timber harvest and investment under different objectives—discussion and synthesis. Forest Science Monograph, 18, 31.

    Google Scholar 

  29. Kaipainen, T., Liski, J., Pussinen, A., & Karjalainen, T. (2004). Managing carbon sinks by changing rotation length in European forests. Environmental Science & Policy, 7, 205–219. DOI 10.1016/j.envsci.2004.03.001.

    Article  CAS  Google Scholar 

  30. Kangas, J. (1992). Multiple use planning of forest resources by using the analytic hierarchy process. Scandinavian Journal of Forest Research, 7, 259–268.

    Article  Google Scholar 

  31. Kangas, J., & Kuusipalo, J. (1993). Integrating biodiversity into forest management planning and decision-making. Forest Ecology and Management, 61, 1–15. DOI 10.1016/0378-1127(93)90186-Q.

    Article  Google Scholar 

  32. Karjalainen, T., Pussinen, A., Kellomaki, S., & Makipaa, R. (1999). Scenarios for the carbon balance of Finnish forests and wood products. Environmental Science & Policy, 2, 165–175. DOI 10.1016/S1462-9011(98)00047-1.

    Article  CAS  Google Scholar 

  33. Karjalainen, T., Pussinen, A., Liski, J., Nabuurs, G. J., Erhard, M., Eggers, T., et al. (2002). An approach towards an estimate of the impact of forest management and climate change on the European forest sector carbon budget: Germany as a case study. Forest Ecology and Management, 162, 87–103. DOI 10.1016/S0378–1127(02)00052-X.

    Article  Google Scholar 

  34. Keleş, S. (2003). Optimization of timber and water production values of forest ecosystems using linear programming. Master thesis, Karadeniz Technical University, Faculty of Forestry, Trabzon-Turkey.

  35. Keleş, S., & Başkent, E. Z. (2007). Modeling and analyzing timber production and carbon sequestration values of forest ecosystems: A case study. Polish Journal of Environmental Studies, 16(3), 473–479.

    Google Scholar 

  36. Keleş, S., Yolasığmaz, H. A., & Başkent, E. Z. (2007). Long term modeling and analyzing of some important forest ecosystem values with linear programming. Fresenius Environmental Bulletin, 16(8), 963–972.

    Google Scholar 

  37. Krcmar, E., Stennes, B., van Kooten, G. C., & Vertinsky, I. (2001). Carbon sequestration and land management under uncertainty. European Journal of Operational Research, 135, 616–629. DOI 10.1016/S0377-2217(00)00326-X.

    Article  Google Scholar 

  38. Krcmar, E., van Kooten, G. C., & Vertinsky, I. (2005). Managing forest and marginal agricultural land for multiple tradeoffs: Compromising on economic, carbon and structural diversity objectives. Ecological Modelling, 185, 451–468. DOI 10.1016/j.ecolmodel.2004.12.014.

    Article  Google Scholar 

  39. Kurttila, M. (2001). The spatial structure of forests in the optimization calculations of forest planning- a landscape ecological perspective. Forest Ecology and Management, 142, 129–142. DOI 10.1016/S0378-1127(00)00343-1.

    Article  Google Scholar 

  40. Leuschner, W. A. (1990). Forest regulation, harvest scheduling, and plannıng techniques. New York: John Wiley & Sons, Inc.

    Google Scholar 

  41. Liu, J., Peng, C., Apps, M., Dang, Q., Banfield, E., & Kurz, W. (2002). Historic carbon budgets of Ontario’s forest ecosystems. Forest Ecology and Management, 169, 103–114. DOI 10.1016/S0378-1127(02)00301-8.

    Article  Google Scholar 

  42. Malchow-Moller, N., Strange, N., & Thorsen, B. J. (2004). Real-options aspects of adjacency constraints. Forest Policy and Economics, 6, 261–270. DOI 10.1016/j.forpol.2004.03.002.

    Article  Google Scholar 

  43. Masera, O. R., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G. J., et al. (2003). Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecological Modelling, 164, 177–199. DOI 10.1016/S0304-3800(02)00419-2.

    Article  CAS  Google Scholar 

  44. Milne, R., & Brown, T. A. (1997). Carbon in the vegetation and soils of Great Britain. Journal of Environmental Management, 49, 413–433. DOI 10.1006/jema.1995.0118.

    Article  Google Scholar 

  45. Newell, R. G., & Stavins, R. N. (2000). Climate change and forest sinks: Factors affecting the costs of carbon sequestration. Journal of Environmental Economics and Management, 40, 211–235. DOI 10.1006/jeem.1999.1120.

    Article  Google Scholar 

  46. Petersen, A. K., & Solberg, B. (2004). Greenhouse gas emissions and costs over the life cycle of wood and alternative flooring materials. Climate Change, 64, 143–167. DOI 10.1023/B:CLIM.0000024689.70143.79.

    Article  CAS  Google Scholar 

  47. Pukkala, T. (2002). Measuring non wood forest outputs in numerical forest planning. In T. Pukkala (Ed.), Multi‑objective forest planning (pp. 173–207). Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  48. Pukkala, T., Nuutinen, T., & Kangas, J. (1995). Integrating scenic and recreational amenities into numerical forest planning. Landscape and Urban Planning, 32(3), 185–195. DOI 10.1016/0169-2046(94)00195-9.

    Article  Google Scholar 

  49. Pussinen, A., Karjalainen, T., Kellomaki, S., & Makipaa, S. (1997). Potential contribution of the forest sector to carbon sequestration in Finland. Biomass and Bioenergy, 13(6), 377–387. DOI 10.1016/S0961-9534(97)10048-4.

    Article  CAS  Google Scholar 

  50. Raymer, A. K. P., Gobakken, T., Hoen, H. F., & Solberg, B. (2005). GAYA-J/C: A forest management optimization model with a complete carbon flow account. Manuscript. In PhD thesis of Raymer “Modeling and analyzing climate gas impacts of forest management”, Norwegian University of Life Sciences, p. 18.

  51. Raymer, A. K. P., Gobakken, T., Hoen, H. F., & Solberg, B. (2005). Optimal forest management and cost-effectivenes when increasing the carbon benefit from a forest area—a case study of Hedmark County in Norway. Manuscript. In PhD thesis of Raymer “Modeling and analyzing climate gas impacts of forest management”, Norwegian University of Life Sciences, p. 23.

  52. Rowse, J., & Center, C. J. (1998). Forest harvesting to optimize timber production and water runoff. Socio-Economic Planning Sciences, 32(4), 277–293. DOI 10.1016/S0038-0121(97)00038-4.

    Article  Google Scholar 

  53. Solberg, B. (1997). Economic aspects of forestry and climate change. Commonwealth Forestry Review, 77(3), 239–233.

    Google Scholar 

  54. Song, C., & Woodcock, C. E. (2003). A regional forest ecosystem carbon budget model: Impacts of forest age structure and land use history. Ecological Modelling, 164, 33–47. DOI 10.1016/S0304-3800(03)00013-9.

    Article  CAS  Google Scholar 

  55. SPO (2001). VIII. Five year development plan: Forestry special impression commission report. State Planning Organization Publication Number: 2531, Ankara, 539 pp.

  56. Stednick, J. D. (1996). Monitoring the effects of timber harvest on annual water yield. Journal of Hydrology, 176, 79–95. DOI 10.1016/0022-1694(95)02780-7.

    Article  Google Scholar 

  57. Strange, N., Tarp, P., Helles, F., & Brodie, J. D. (1999). A four-stage approach to evaluate management alternatives in multiple-use forestry. Forest Ecology and Management, 124, 79–91. DOI 10.1016/S0378-1127(99)00048-1.

    Article  Google Scholar 

  58. Sun, O., Eren, E., & Orpak, M. (1977). Rates of wood products of various forest species in Turkey. TÜBİTAK/TOAG-288, Research paper.

  59. Sun, G., McNulty, S. G., Shepard, J. P., Amatya, D. M., Riekerk, H., Comerford, N. B., et al. (2001). Effects of timber management on the hydrology of wetland forests in the southern United States. Forest Ecology and Management, 143, 227–236. DOI 10.1016/S0378-1127(00)00520-X.

    Article  Google Scholar 

  60. Tecle, A., Shrestha, B. P., & Duckstein, L. (1998). A multiobjective decision support system for multiresource forest management. Group Decision and Negotiation, 7(1), 23–40. DOI 10.1023/A:1008671129325.

    Article  Google Scholar 

  61. Türker, M. F. (2000). Forest management lecturer notes. Karadeniz Technical University, Faculty of Forestry, Lecturer’s notes, No: 59, Trabzon-Turkey, 226 p.

  62. UN-ECE/FAO (2000). Global forest resources assessment 2000, Main Report, Geneva timber and forest study papers, No: 17, United Nations, New York and Geneva.

  63. Van Kooten, G. C., Grainger, A., Ley, E., Marland, G., & Solberg, B. (1997). Conceptual issues related to carbon sequestration: Uncertainty and time. Critical Reviews in Environmental Science and Technology, 27, 65–82.

    Article  Google Scholar 

  64. Whitehead, P. G., & Robinson, M. (1993). Experimental basin studies—an international and historical perspective of forest impacts. Journal of Hydrology, 145, 217–230. DOI 10.1016/0022-1694(93)90055-E.

    Article  Google Scholar 

  65. Yolasığmaz, H. A. (2004). The concept and the implementation of forest ecosystem management (a case study of Artvin Planning Unit). PhD thesis, Karadeniz Technical University, Faculty of Forestry, Trabzon- Turkey, 185 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Keleş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskent, E.Z., Keleş, S. Developing Alternative Forest Management Planning Strategies Incorporating Timber, Water and Carbon Values: An Examination of their Interactions. Environ Model Assess 14, 467–480 (2009). https://doi.org/10.1007/s10666-008-9148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9148-4

Keywords

Navigation