Skip to main content

Advertisement

Log in

Integrated Ambient and Microenvironment Model for Estimation of PM10 Exposures of Children in Annual and Episode Settings

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Particulate matter air pollution is estimated to cause in the order of 350,000 excess deaths in the European Union calling for policy development and evaluation tools. In the current work, a model for PM10 exposures of children is developed using microenvironment time activities and infiltration of ambient pollution indoors, both evaluated against observations earlier and integrated with city-wide air quality models in the current work. The model is demonstrated using data from two cities in Italy. High-end short-term exposures are characterized by an episode-day situation in Turin, and annual mean exposures in downtown Bologna. The air quality model was unable to capture the highest levels during the episode, and therefore, the exposure model was adjusted using observed–modeled ratio from a monitoring station. Air quality model performance for the annual levels was significantly better. Annual exposure variability within the target population was 1.5-fold in the downtown area Bologna and tenfold during the episode day in Turin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://fumapex.dmi.dk (accessed December 2007) section “Reports.” Deliverables D7.3 and D7.4 present the exposure modeling details, and D8.2 summarizes the air-quality modeling systems based on technical reports D1–D6 from previous work packages.

References

  1. ARPA Emilia-Romagna and University of Bologna (2005). Caratterizzazione chimico-fisica del particolato atmosferico nelle classi dimensionali tra 10 e 0.4 μm [Chemical and physical characterization of atmospheric particulate in the dimensional classes between 10 and 0.4 μm, Internal Report in Italian]. Retrieved 14 June 2007 from http://www.arpa.emr.it/reggioemilia/download/PolveRe.pdf (in Italian).

  2. Baklanov, A., Hänninen, O., Slørdal, L. H., Kukkonen, J., Bjergene, N., Fay, B., et al. (2005). Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmospheric Chemistry and Physics Discussions, 6, 1867–1913.

    Article  Google Scholar 

  3. Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., et al. (2004). Aerosol modelling with Chimere: preliminary evaluation at the continental scale. Atmospheric Environment, 38, 2803–2817.

    Article  CAS  Google Scholar 

  4. Burke, J. M., Zufall, M. J., & Özkaynak, H. (2001). A population exposure model for particulate matter: Case study results for PM2.5 in Philadelphia, PA. Journal of Exposure Analysis and Environmental Epidemiology, 11(6), 470–489.

    Article  CAS  Google Scholar 

  5. Calori, G., & Silibello, C. (2005). FARM (Flexible Air quality Regional Model)—Model formulation and user manual, version 2.4. Arianet R2005.07. European Topic Centre on Air and Climate Change–Topic Centre of European Environment Agency. Retrieved 14 June 2007 from http://pandora.meng.auth.gr/mds/showlong.php?id=130.

  6. CEHAPE (2004). Children’s Environment and Health Action Plan for Europe, EUR/04/5046267/7. Fourth Ministerial Conference on Environment and Health Budapest, Hungary, 23–25 June 2004. Retrieved 14 June 2007 from http://www.euro.who.int/document/e83338.pdf.

  7. CERC (2003). ADMS-Urban user guide (version 2.0). Cambridge. European Topic Centre on Air and Climate Change–Topic Centre of European Environment Agency. Retrieved 14 June 2007 from http://pandora.meng.auth.gr/mds/showlong.php?id=18&MTG_Session=2b494cdf39facee0690d21cf7baf24cf.

  8. Cotton, W. R., Pielke, R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., et al. (2003). RAMS 2001: Current status and future directions. Meteorology and Atmospheric Physics, 82, 5–29.

    Article  Google Scholar 

  9. Duan, N. (1982). Models for human exposure to air pollution. Environment International, 8, 305–309.

    Article  CAS  Google Scholar 

  10. EC (2005). Proposal for a directive of the European parliament and of the council on ambient air quality and cleaner air for Europe. Brussels, 21.9.2005, COM (2005) 447 final, 2005/0183 (COD). Retrieved 14 June 2007 from http://ec.europa.eu/environment/air/cafe/pdf/com_2005_447_en.pdf.

  11. Gordian, M. E., Haneuse, S., & Wakefield, J. (2006). An investigation of the association between traffic exposure and the diagnosis of asthma in children. Journal of Exposure Analysis and Environmental Epidemiology, 16(1), 49–55.

    Article  CAS  Google Scholar 

  12. Hänninen, O. O., Alm, S., Katsouyanni, K., Künzli, N., Maroni, M., Nieuwenhuijsen, M. J., et al. (2004a). The Expolis Study: Implications for exposure research and environmental policy in Europe. Journal of Exposure Analysis and Environmental Epidemiology, 14, 440–456.

    Article  CAS  Google Scholar 

  13. Hänninen, O. O., Kruize, H., Lebret, E., & Jantunen, M. (2003). Expolis simulation model: PM2.5 application and comparison with measurements in Helsinki. Journal of Exposure Analysis and Environmental Epidemiology, 13, 74–85.

    Article  CAS  Google Scholar 

  14. Hänninen, O. O., Lebret, E., Ilacqua, V., Katsouyanni, K., Künzli, N., Srám, R. J., et al. (2004b). Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmospheric Environment, 38(37), 6411–6423.

    Article  CAS  Google Scholar 

  15. Hänninen, O. O., Lebret, E., Tuomisto, J. T., & Jantunen, M. J. (2005a). Characterization of model error in the simulation of PM2.5 exposure distributions of the working age population in Helsinki, Finland. Journal of Air & Waste Managegement Association, 55, 446–457.

    Google Scholar 

  16. Hänninen, O. O., Palonen, J., Tuomisto, J., Yli-Tuomi, T., Seppänen, O., & Jantunen, M. J. (2005b). Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings. Indoor Air, 15(4), 246–256.

    Article  Google Scholar 

  17. Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Muller, J. F., Emmons, L. K., et al. (1998). MOZART: A global chemical transport model for ozone and related chemical tracers, 2. Model results and evaluation. Journal of Geophysical Research, 103, 28291–28336.

    Article  CAS  Google Scholar 

  18. Istituto Superiore di Sanità (2005a). Studio di valutazione dell’esposizione inalatoria a contaminazione atmosferica nella città di Ferrara. Prima fase [Assessment study on inhalation exposure to atmospheric pollution in Ferrara] ISTISAN Report 03/19. Retrieved 14 June 2007 from http://www.iss.it/binary/publ/publi/0319.1109150761.pdf#search=%22rapporto%20istisan%2003%2F19%22 (in Italian).

  19. Istituto Superiore di Sanità (2005b). Studio di valutazione dell’esposizione inalatoria a contaminazione atmosferica nella città di Ferrara. Seconda fase [Assessment study on inhalation exposure to atmospheric pollution in Ferrara]. ISTISAN report 05/9. Retrieved 14 June 2007 from http://www.iss.it/binary/publ/publi/05–9.1120812015.pdf#search=%22rapporto%20istisan%2005%2F9%22 (in Italian).

  20. Kim, D., Sass-Kortsak, A., Purdham, J. T., Dales, R. E., & Brook, J. R. (2006). Associations between personal exposure and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada. Journal of Exposure Analysis and Environmental Epidemiology, 16(2), 172–183.

    Article  CAS  Google Scholar 

  21. Koistinen, K. J., Hänninen, O. O., Rotko, T., Edwards, R. D., Moschandreas, D., & Jantunen, M. J. (2001). Behavioral and environmental determinants of personal exposures to PM2.5 in Expolis–Helsinki, Finland. Atmospheric Environment, 35(14), 2473–2481.

    Article  CAS  Google Scholar 

  22. Kousa, A., Oglesby, L., Koistinen, K., Kunzli, N., & Jantunen, M. (2002). Exposure chain of urban air PM2.5—Associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the Expolis study. Atmospheric Environment, 36, 3031–3039.

    Article  CAS  Google Scholar 

  23. Kruize, H., Hänninen, O. O., Breugelmans, O., Lebret, E., & Jantunen, M. (2003). Description and demonstration of the EXPOLIS simulation model: Two examples of modeling population exposure to particulate matter. Journal of Exposure Analysis and Environmental Epidemiology, 13(2), 87–99.

    Article  CAS  Google Scholar 

  24. Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environmental Health Perspectives, 108(10), 941–947.

    Article  CAS  Google Scholar 

  25. Letz, R., Ryan, P. B., & Spengler, J. D. (1984). Estimated distributions of personal exposure to respirable particles. Environmental Monitoring & Assessment, 4, 351–359.

    Article  Google Scholar 

  26. Meng, Q. Y., Turpin, B. J., Korn, L., Weisel, C. P., Morandi, M., Colome, S., et al. (2005). Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of RIOPA data. Journal of Exposure Analysis and Environmental Epidemiology, 15, 17–28.

    Article  CAS  Google Scholar 

  27. Özkaynak, H., Xue, J., Spengler, J., Wallace, L., Pellizzari, E., & Jenkins, P. (1996). Personal exposure to airborne particles and metals: Results from the particle team study in Riverside, California. Journal of Exposure Analysis and Environmental Epidemiology, 6, 57–78.

    Google Scholar 

  28. Pellizzari, E. D., Clayton, C. A., Rodes, C. E., Mason, R. E., Piper, L. L., Fort, B., et al. (1999). Particulate matter and manganese exposures in Toronto, Canada. Atmospheric Environment, 33, 721–734.

    Article  CAS  Google Scholar 

  29. Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., et al. (1992). A comprehensive meteorological modelling system—RAMS. Meteorology and Atmospheric Physics, 49, 69–91.

    Article  Google Scholar 

  30. Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of Americal Medical Association, 287(9), 1132–1141.

    Article  CAS  Google Scholar 

  31. Pope, A., & Dockery, D. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of Air & Waste Management Association, 56, 709–742.

    CAS  Google Scholar 

  32. Ryan, P. B., Spengler, J. D., & Letz, R. (1986). Estimating personal exposures to NO2. Environment International, 12, 395–400.

    Article  CAS  Google Scholar 

  33. Steppeler, J., Doms, G., Schättler, U., Bitzer, H. W., Gassmann, A., Damrath, U., et al. (2003). Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorology and Atmospheric Physics, 82, 75–96.

    Article  Google Scholar 

  34. Tainio, T., Tuomisto, J. T., Aarnio, P., Pekkanen, J., Hänninen, O., Koistinen, K., et al. (2005). Health effects caused by primary fine particulate matter (PM2.5) emitted from busses in Helsinki Metropolitan Area, Finland. Risk Analysis, 25(1), 151–160.

    Article  Google Scholar 

  35. Wallenius, L., Kukkonen, J., Karppinen, A., Pohjola, M., Härkönen, J., Jantunen, M., et al. (2002). Health Effects caused by urban air pollution for the transport system plan scenarios in Helsinki area-heat. In N. Moussiopoulos & K. Karatzas (Eds.) Proceedings of a SATURN-EURASAP Workshop Rhodes, Greece, 4 April 2002. Retrieved 14 June 2007 from http://aix.meng.auth.gr/saturn/aqmanagment/karpinnen.pdf.

  36. WHO (2005). Health effects of transport-related air pollution. World Health Organisation Regional Office for Europe, Copenhagen. Retrieved 14 June 2007 from http://www.euro.who.int/document/e86650.pdf.

  37. WHO (2006). World Health Organisation Air Quality Guidelines, Global Update 2005, Copenhagen. 484 pp. Retrieved 14 June 2007 from http://www.euro.who.int/Document/E90038.pdf.

  38. Zauli-Sajani, S., Scotto, F., Lauriola, P., Galassi, F., & Montanari, A. (2004). Urban air pollution monitoring and correlation properties between fixed-site stations. Journal of Air & Waste Management Assocication, 54, 1236–1241.

    Google Scholar 

Download references

Acknowledgment

The authors want to express their gratitude to the colleagues that have contributed to the development of the air quality information systems and models run that the current work is based on, especially Cinzia Cascone, ARPA Piemonte, Sandro Finardi, Alessio Dallura, Arianet Consulting, Marco Deserti, Linda Passoni, Vanes Polluzzi, ARPA Emilia-Romagna, and Hydro Meteorological Service (ARPA-SIM), Bologna. This work has been supported by the European Commission under the FP5 EESD program Key Action City of Tomorrow (FUMAPEX; contract no. EVK4-CT-2002-00097) and intramural funding by the participating institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Hänninen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hänninen, O., Zauli-Sajani, S., De Maria, R. et al. Integrated Ambient and Microenvironment Model for Estimation of PM10 Exposures of Children in Annual and Episode Settings. Environ Model Assess 14, 419–429 (2009). https://doi.org/10.1007/s10666-008-9141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9141-y

Keywords

Navigation