Skip to main content

Advertisement

Log in

Optimal Selection of Priority Development Areas Considering Tradeoffs Between Hydrology and Development Configuration

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Mixed-integer linear programs are proposed for siting development and conservation areas in watersheds, addressing economic objectives (development perimeter and proximity) and ecological objectives. Links between watershed hydrology and ecology need not be well defined. Parameters for the linear programs are obtained from linearization of the SWAT hydrologic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aerts, J. C. J. H., Eisinger, E., & Heuvelink, G. B. M. (2003). Using linear integer programming for multi-subwatershed land-use allocation. Geographical Analysis, 35(2), 148–169.

    Article  Google Scholar 

  2. Anderson, R. M., Hobbs, B. F., & Koonce, J. F. (2006). Modeling effects of forest cover reduction on larval Walleye survival in Lake Erie tributary spawning basins. Ecosystems, 9, 725–739.

    Article  Google Scholar 

  3. Arnold, J. G., Srinavasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment—Part I: Model development. Journal of the American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  4. Bernhardt, E. S. (2005). Synthesizing U.S. river restoration efforts. Science, 308, 636–637.

    Article  CAS  Google Scholar 

  5. Binational Lake Erie LaMP Committee. (2000). Lake Erie Lakewide Management Plan (LaMP), Ohio EPA, Columbus, OH (viewed 7/7/2007), www.epa.gov/glnpo/lakeerie/lamp2000/.

  6. Chuvieco, E. (2005). Integration of linear programming and GIS for land-use modeling. International Journal of Geographical Information Science, 7(1), 71–83.

    Article  Google Scholar 

  7. Cohon, J. L. (1976). Multiobjective programming and planning. New York: Academic Press.

    Google Scholar 

  8. Greenberg, H. J. (1995). Mathematical programming models for environmental quality control. Operations Research, 43(4), 578–622.

    Article  Google Scholar 

  9. Guldmann, J.-M., & Shefer, D. (1977). Centralized air-pollution treatment and the optimal location of industries. Environment and Planning A, 9(10), 1121–1142.

    Article  Google Scholar 

  10. Inamdar, S. (2004). Sediment Modeling for the Buffalo River Watershed. Report (viewed 06/30/2007), Buffalo State College, Buffalo, NY, www.glc.org/tributary/models/documents/BuffaloFinalReport_000.pdf.

  11. Kaur, R., Srivastava, R., Betne, R., Mishra, K., & Dutta, D. (2004). Integration of linear programming and a watershed-scale hydrologic model for proposing an optimized land-use plan and assessing its impact on soil conservation - A case study of the Nagwan watershed in the Hazaribagh district of Jharkhand, India. International Journal of Geographical Information Science, 18(1), 73–98.

    Article  Google Scholar 

  12. Kim, J. B., Hobbs, B. F., & Koonce, J. F. (2003). Multicriteria Bayesian analysis of lower trophic level uncertainties and value of research in Lake Erie. Human and Ecological Risk Assessment, 9, 1023–1057.

    Article  Google Scholar 

  13. Migdalas, A., Varbrand, P., & Pardalos, P. M., (Eds.) (1998). Multilevel optimization: Algorithms and applications. Boston: Kluwer Academic Press.

  14. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., & Williams, J. R. (2002). Soil and Water Assessment Tool Users Manual Version 2000. Texas Water Resources Institute, Chapter 33.

  15. Nidumolu, U. B., van Keulen, H., Lubbers, M., & Mapfumo, A. (2007). Combining interactive multiple goal linear programming with an inter-stakeholder communication matrix to generate land use options. Environmental Modelling & Software, 22(1), 73–83.

    Article  Google Scholar 

  16. Ohio Lake Erie Commission (2006). Linking land use and Lake Erie: A planning framework, (viewed 03/15/2007), www.epa.state.oh.us/oleo/bg1/documents/planningframeworklinking.pdf.

  17. Tang, Z., Engel, B. A., Lim, K. J., Pijanowski, B. C., & Harbor, J. (2005). Forecasting land use change and its environmental impact at a watershed scale. Journal of the American Water Resources Association, 41(6), 1347–1360.

    Article  Google Scholar 

  18. US General Soil Map. (2006). (viewed 05/11/2007), NRCS STATSGO, http://soildatamart.nrcs.usda.gov/USDGSM.aspx.

  19. Williams, J. C., Revelle, C. S., & Levin, S. A. (2004). Using mathematical optimization models to design nature reserves. Front. Ecol. Environ., 2(2), 98–105.

    Article  Google Scholar 

  20. Wright, J., ReVelle, C., & Cohon, J. (1983). A multiobjective integer programming model for the land acquisition problem. Regional Science and Urban Economics, 13(1983), 31–53.

    Article  Google Scholar 

  21. Yeo, I. Y., & Guldmann, J. M. (2006). Land-use optimization for controlling peak flow discharge and nonpoint source water pollution. Environment and Planning B: Planning and Design, 33(6), 903–921.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by EPA STAR Grant No. 8388101 and the National Center for Earthsurface Dynamics, a NSF Science and Technology Center. We thank our colleagues Justin Williams, Pearl Zheng, and Hong Li at the Johns Hopkins University and Joseph Koonce and Jon Cline at Case Western Reserve University for their suggestions and assistance with software and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F. Hobbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hargreaves, J.J., Hobbs, B.F. Optimal Selection of Priority Development Areas Considering Tradeoffs Between Hydrology and Development Configuration. Environ Model Assess 14, 289–302 (2009). https://doi.org/10.1007/s10666-007-9130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-007-9130-6

Keywords

Navigation