Skip to main content
Log in

A modular approach to Integrated Assessment modeling

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach to model coupling that probably forms the methodological basis of a new generation of Integrated Assessment models. This approach respects the knowledge and expertise that is embodied in existing models and encourages their gradual evolution. Modularity is the guiding principle. Our approach is distinguished by the way modules are coupled which is based on an interplay of a job control module, a numerical coupling module, and a couple of stand-alone functional modules. The numerical coupling module - the core component - serves to treat the feedbacks between the functional modules. A first implemented example that couples an economic and a climate module by means of a two-phase meta-optimization is presented here. The algorithm and mathematical structure behind are discussed as well as important features such as convergence behavior and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Reynolds B. Acock (1997) ArticleTitleModularity and genericness in plant and ecosystem models Ecological Modelling 94 7–16

    Google Scholar 

  2. M.J. Janssen (1998) Modelling Clobal Change: The Art of Integrated Asessment Modelling Edward Elgar Celtenham

    Google Scholar 

  3. J. Rotmans H. Dowlatabadi (1998) Integrated assessment modeling S. Rayner E. Malone (Eds) Human Choice and Climate Change Tools for Policy Analysis Batelle Press Columbus 291–377

    Google Scholar 

  4. J. Rotmans M.B.A. Asselt Particlevan (1996) ArticleTitleIntegrated assessment: a growing child on its way to maturity Climatic Change 34 327–336

    Google Scholar 

  5. S.H. Schneider (1997) ArticleTitleIntegrated assessment modeling of global climate change: transparent rational tool for policymaking or opaque screen hiding value-laden assumptions? Environmental Modeling and Assessment 2 229–248

    Google Scholar 

  6. W.D. Nordhaus (1994) Managing the Global Commons MIT Press Cambridge

    Google Scholar 

  7. J. Alcamo (1994) IMAGE 2.0 - Integrated Modeling of Global Climate Change Kluwer Dordrecht

    Google Scholar 

  8. S. Messner L. Schrattenholzer (2000) ArticleTitleMESSAGE-MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively Energy 25 267–282

    Google Scholar 

  9. P.S. Gaertner (2001) ArticleTitleOptimisation analysis and integrated models of the enhanced greenhouse effect Environmental Modelling and Assessment 6 7–34

    Google Scholar 

  10. C. Jaeger M. Leimbach C. Carraro K. Hasselmann J.C. Hourcade A. Keeler R. Klein (2002) Community integrated assessment: modules for cooperation SeriesTitleWorking Paper, FEEMNota di Lavoro NumberInSeries53.2002 Fondazione Eni Enrico Mattei Milan

    Google Scholar 

  11. H.J. Schellnhuber, R. Warren, A. Haxeltine and L. Naylor, Developments in integrated assessment: the co-productive approach, in: Proceedings of OECD Workshop on Benefits of Climate Policy, December 2002, Paris, in press.

  12. M.J. Janssen (1996) Meeting targets: tools to support integrated assessment modelling of global change CIP-Gegevens Koninklijke Bibliotheek Den Haag

    Google Scholar 

  13. D.G. Luenberger (1969) Optimization by Vector Space Methods Wiley New York

    Google Scholar 

  14. R. Caballero T. Gomez M. Luque F. Miguel F. Ruiz (2002) ArticleTitleHierarchical generation of Pareto optimal solutions in large-scale multiobjective systems Computers & Operations Research 29 1537–1558

    Google Scholar 

  15. G.B. Dantzig P. Wolfe (1960) ArticleTitleDecomposition principle for linear programs Operations Research 8 101–111 Occurrence Handle10.1287/opre.8.1.101

    Article  Google Scholar 

  16. J.F. Shapiro (1979) Mathematical Programming: Structures and Algorithms Wiley New York

    Google Scholar 

  17. M.G. Singh (1980) Dynamical Hierarchical Control North-Holland Amsterdam

    Google Scholar 

  18. O. Bahn A. Haurie S. Kypreos J.-P. Vial (1998) ArticleTitleAdvanced mathematical programming modeling to assess the benefits from international CO2 abatement cooperation Environmenmtal Modeling and Assessment 3 107–115

    Google Scholar 

  19. O. Bahn A. Haurie S. Kypreos J.-P. Vial (1996) A decomposition approach to multiregional environmental planning: a numerical study C. Carraro A. Haurie (Eds) Operations Research and Environmental Management Kluwer Dordrecht 119–132

    Google Scholar 

  20. P.B. Dixon (1975) The Theory of Joint Maximization North-Holland Amsterdam

    Google Scholar 

  21. F.L. Toth T. Bruckner H.-M. Fuessel M. Leimbach G. Petschel-Held (2003) ArticleTitleIntegrated asessment of long-term climate policies: Part 1 -Model presentation Climatic Change 56 37–56

    Google Scholar 

  22. M. Leimbach T. Bruckner (2001) ArticleTitleInfluence of economic constraints on the shape of emission corridors Computational Economics 18 173–191

    Google Scholar 

  23. T. Bruckner G. Hooss H.-M. Fuessel K. Hasselmann (2003) ArticleTitleClimate system modeling in the framework of the tolerable Windows approach: The ICLIPS climate model Climatic Change 56 119–137 Occurrence Handle1:CAS:528:DC%2BD3sXjs1WisQ%3D%3D

    CAS  Google Scholar 

  24. M. Leimbach F.L. Toth (2003) ArticleTitleEconomic development and emission control over the long term: the ICLIPS aggregated economic model Climatic Change 56 139–165 Occurrence Handle1:CAS:528:DC%2BD38Xpt1aksLY%3D

    CAS  Google Scholar 

  25. A. Stolbjerg Drud Leon Lasdon (1997) Nonlinear programming T. Gal H.J. Greenberg (Eds) Advances in Sensitivity Analysis and Parametric Programming Kluwer Boston 10–14

    Google Scholar 

  26. D.G. Luenberger (1984) Introduction to Linear and Non-linear Programming Addison-Wesley Menlo Park

    Google Scholar 

  27. A. Brooke D. Kendrick A. Meeraus (1992) GAMS - A User’s Guide, Release 2.25 The Scientific Press San Francisco

    Google Scholar 

  28. A. Stolbjerg Drud (1994) ArticleTitleCONOPT - A large-scale GRG code ORSA Journal on Computing 6 207–216

    Google Scholar 

  29. T.M.L. Wigley S.C.B. Raper (1987) ArticleTitleThermal expansion of sea water associated with global warming Nature 330 127–131

    Google Scholar 

  30. T.M.L. Wigley S.C.B. Raper (1992) ArticleTitleImplication for climate and sea level of revised IPCC emissions scenarios Nature 357 293–300 Occurrence Handle1:CAS:528:DyaK38XktlSrtb8%3D

    CAS  Google Scholar 

  31. T.M.L. Wigley S.C.B. Raper S. Smith M. Hulme (2000) The MAGICC/SCENGEN Climate Scenario Generator: Version 2.4: Technical Manual Climatic Research Unit, UEA Norwich

    Google Scholar 

  32. IPCC, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Leimbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leimbach, M., Jaeger, C. A modular approach to Integrated Assessment modeling. Environ Model Assess 9, 207–220 (2005). https://doi.org/10.1007/s10666-005-2361-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-005-2361-5

Keywords

Navigation