Skip to main content
Log in

The instability of a plate fixed at both ends in an axial flow revisited: an application of the DQ–BE method

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This work revisits the aero-elastic instability of a plate subjected to an axial subsonic flow and reports a refined numerical solution. The plate is fixed at its both ends, and the fluid computational region is decomposed into two subregions belonging to the plate area and the downstream outside area of the plate. Compared with the previous studies, the present numerical method is simple and straightforward, and is successfully extended to include the effect of the downstream outside area. By considering the downstream outside area, this problem is formulated as a boundary integral equation and three partial differential equations. Then the boundary integral equation is solved by the boundary element (BE) method, and the differential quadrature (DQ) method is applied for the partial differential equations. A wind tunnel experiment is completed for validations of the present fluid solution. Three cases of outside-area boundary conditions and four cases of plate boundary conditions are considered, and their influences on the plate instability behavior are studied. Results show that the present formulation is workable and is in good agreement with the existing theories. The effects of the outside area on the plate instability behavior, which have escaped the attention of the previous studies, are clearly observed. The present study can serve as references for other relative studies on plate instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Watanabe Y, Isogai K, Suzuki S, Sugihara M (2002) A theoretical study of paper flutter. J Fluids Struct 16:543–560

    Article  Google Scholar 

  2. Allen JJ, Smits AJ (2001) Energy harvesting eel. J Fluids Struct 15:629–640

    Article  Google Scholar 

  3. Pineirua M, Doare O, Michelin S (2015) Influence and optimization of the electrodes position in a piezoelectric energy harvesting flag. J Sound Vib 346:200–215

    Article  Google Scholar 

  4. Howell RM, Lucey AD (2015) Flutter of spring-mounted flexible plates in uniform flow. J Fluids Struct 59:370–393

    Article  Google Scholar 

  5. Balint TS, Lucey AD (2005) Instability of a cantilevered flexible plate in viscous channel flow. J Fluids Struct 20(7):893–912

    Article  Google Scholar 

  6. Cisonni J, Lucey AD, Elliott NS, Heil M (2017) The stability of a flexible cantilever in viscous channel flow. J Sound Vib 396:186–202

    Article  Google Scholar 

  7. Sygulski R (2007) Stability of membrane in low subsonic flow. Int J Non-Linear Mech 42(1):196–202

    Article  MATH  Google Scholar 

  8. Dowell EH (1975) Aeroelasticity of plates and shells. Noordhoff International Publishing, Leyden

    MATH  Google Scholar 

  9. Paidoussis MP (2004) Fluid-structure interactions. Slender structures and axial flow, vol 2, 1st edn. Elsevier Academic Press, London

    Google Scholar 

  10. Li P, Yang YR, Xu W, Chen G (2012) On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin plates subjected to external excitation. Arch Appl Mech 82:1251–1267

    Article  MATH  Google Scholar 

  11. Li P, Yang YR, Dong Y (2015) Bifurcation structure and scaling property of a subsonic periodically driven thin panel with geometric nonlinearity. ZAMM-App Math Mech 2:173–183

    Article  MATH  Google Scholar 

  12. Li P, Yang YR, Zhang ML (2011) Melnikov’s method for chaos of a two-dimensional thin panel in subsonic flow with external excitation. Mech Res Commun 38:524–528

    Article  MATH  Google Scholar 

  13. Li P, Yang YR (2011) Instability analysis of fluid and elastic panel system based on the differential quadrature method. In: Second International conference on mechanic automation and control engineering IEEE, pp 2258–2262

  14. Li P, Yang YR, Xu W (2012) Nonlinear dynamics analysis of a two-dimensional thin panel with an external forcing in incompressible subsonic flow. Nonlinear Dyn 67:1251–1267

    MathSciNet  Google Scholar 

  15. Li P, Yang YR, Shi HJ (2015) Hopf and two-multiple semi-stable limit cycle bifurcations of a restrained plate subjected to subsonic flow. J Sound Vib 335:286–303

    Article  Google Scholar 

  16. Li P, Li ZW, Liu S, Yang YR (2018) Non-linear limit cycle flutter of a plate with Hertzian contact in axial flow. J Fluids Struct 81:131–160

    Article  Google Scholar 

  17. Dugundji J, Dowell EH, Perkin B (1963) Subsonic flutter of panels on continuous elastic foundations. AIAA J 5:1146–1154

    Google Scholar 

  18. Ishii T (1965) Aeroelastic instabilities of simply supported panels in subsonic flow. Meeting of the AIAA, Los Angeles, AIAA Paper, pp 765–772

  19. Burke MA, Lucey AD, Elliott NS, Howell RM (2013) Stability of a flexible wall separating two inviscid channel flow. In: Proceeding of the ASME 2013 Pressure Vessel and Piping Conference, 14–18 July 2013

  20. Kornecki A, Dowell EH, O’Brien J (1974) On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J Sound Vib 47:163–178

    Article  MATH  Google Scholar 

  21. Shahrokh K, Ellen CH (1979) The stability of partially rigid two-dimensional surfaces in uniform incompressible flow. J Sound Vib 65:339–351

    Article  MATH  Google Scholar 

  22. Evetts RO, Howell RM, Lucey AD (2014) A new model for wake effects upon a cantilevered flexible plate undergoing continuous oscillation due to a high Reynolds-number axial flow. In: Proceedings of the 19th Australasian fluid mechanics conference, 8–11 December 2014

  23. Howell RM, Lucey AD, Carpenter PW, Pitman MW (2009) Interaction between a cantilevered-free flexible plate and ideal flow. J Fluids Struct 25:544–566

    Article  Google Scholar 

  24. Kwak MK (1996) Hydroelastic vibration of rectangular plates. ASME J Appl Mech 63:110–115

    Article  MATH  Google Scholar 

  25. Katz J, Plotkin A (2001) Low-speed aerodynamics, 2nd edn. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  26. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1–27

    Article  Google Scholar 

  27. Shu C (2000) Differential quadrature and its application in engineering. Springer, London

    Book  MATH  Google Scholar 

  28. Peters DA (2008) Two-dimensional incompressible unsteady airfoil theory—an overview. J Fluids Struct 24:295–312

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos: 11302183; 11772273); and the Applied and Basic Research Plans of Sichuan Province, China (Grant No: 2015JY0083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The matrixes in Eq. (21) are:

$$\begin{aligned} {\mathbf{C}}_{lr}^{{\mathrm{bb}}}&= {\left[ {\begin{array}{*{20}{c}} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\\ 0&{}\quad {C_{2,2}^l}&{}\quad {C_{2,N + 3}^l}&{}\quad 0\\ 0&{}\quad {C_{N + 3,2}^r}&{}\quad {C_{N + 3,N + 3}^r}&{}\quad 0 \end{array}} \right] _{4 \times 4}}, \end{aligned}$$
(A.1a)
$$\begin{aligned} {\mathbf{C}}_{lr}^{{\mathrm{bp}}}&= {\left[ {\begin{array}{*{20}{c}} 0&{}\quad 0&{}\quad \cdots &{}\quad 0\\ 0&{}\quad 0&{}\quad \cdots &{}\quad 0\\ {C_{2,3}^l}&{}\quad {C_{2,4}^l}&{}\quad \cdots &{}\quad {C_{2,N + 2}^l}\\ {C_{N + 3,3}^r}&{}\quad {C_{N + 3,4}^r}&{}\quad \cdots &{}\quad {C_{N + 3,N + 2}^r} \end{array}} \right] _{4 \times N}}. \end{aligned}$$
(A.1b)

The matrices in Eq. (22a,b) are:

$$\begin{aligned} {\mathbf{C}}_4^{{\mathrm{pp}}}&= {\left[ {\begin{array}{*{20}{c}} {C_{3,3}^4}&{}\quad {C_{3,4}^4}&{}\quad \cdots &{}\quad {C_{3,N + 2}^4}\\ {C_{4,3}^4}&{}\quad {C_{4,4}^4}&{}\quad \cdots &{}\quad {C_{4,N + 2}^4}\\ \vdots &{}\quad \vdots &{}\quad \ddots &{} \quad \vdots \\ {C_{N + 2,3}^4}&{}\quad {C_{N + 2,4}^4}&{}\quad \cdots &{}\quad {C_{N + 2,N + 2}^4} \end{array}} \right] _{N \times N}},\end{aligned}$$
(A.2a)
$$\begin{aligned} {\mathbf{C}}_4^{{\mathrm{pb}}}&= {\left[ {\begin{array}{*{20}{c}} {C_{3,1}^4}&{}\quad {C_{1,2}^4}&{}\quad {C_{1,N + 3}^4}&{}\quad {C_{1,N + 4}^4}\\ {C_{3,1}^4}&{}\quad {C_{2,2}^4}&{}\quad {C_{2,N + 3}^4}&{}\quad {C_{2,N + 4}^4}\\ \vdots &{}\quad \vdots &{} \quad \vdots &{} \quad \vdots \\ {C_{N + 2,1}^4}&{}\quad {C_{N + 2,2}^4}&{}\quad {C_{N + 2,N + 3}^4}&{}\quad {C_{N + 2,N + 4}^4} \end{array}} \right] _{N \times 4}},\end{aligned}$$
(A.2b)
$$\begin{aligned} {\mathbf{C}}_1^{{\mathrm{pp}}}&= {\left[ {\begin{array}{*{20}{c}} {C_{3,3}^1}&{}\quad {C_{3,4}^1}&{}\quad \cdots &{}\quad {C_{3,N + 2}^1}\\ {C_{4,3}^1}&{}\quad {C_{4,4}^1}&{}\quad \cdots &{}\quad {C_{4,N + 2}^1}\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ {C_{N + 2,3}^1}&{}\quad {C_{N + 2,4}^1}&{}\quad \cdots &{}\quad {C_{N + 2,N + 2}^1} \end{array}} \right] _{N \times N}},\end{aligned}$$
(A.2c)
$$\begin{aligned} {\mathbf{C}}_1^{{\mathrm{pb}}}&= {\left[ {\begin{array}{*{20}{c}} {C_{3,1}^1}&{}\quad {C_{1,2}^1}&{}\quad {C_{1,N + 3}^1}&{}\quad {C_{1,N + 4}^1}\\ {C_{3,1}^1}&{}\quad {C_{2,2}^1}&{}\quad {C_{2,N + 3}^1}&{}\quad {C_{2,N + 4}^1}\\ \vdots &{}\quad \vdots &{}\quad \vdots &{} \quad \vdots \\ {C_{N + 2,1}^1}&{}\quad {C_{N + 2,2}^1}&{}\quad {C_{N + 2,N + 3}^1}&{}\quad {C_{N + 2,N + 4}^1} \end{array}} \right] _{N \times 4}}. \end{aligned}$$
(A.2d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Liang, S., Zhang, D. et al. The instability of a plate fixed at both ends in an axial flow revisited: an application of the DQ–BE method. J Eng Math 118, 43–61 (2019). https://doi.org/10.1007/s10665-019-10013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10013-x

Keywords

Navigation