Skip to main content
Log in

An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We propose a new shape optimization formulation of the Bernoulli problem by tracking the Neumann data. The associated state problem is an equivalent formulation of the Bernoulli problem with a Robin condition. We devise an iterative procedure based on a Lagrangian-like approach to numerically solve the minimization problem. The proposed scheme involves the knowledge of the shape gradient which is established through the minimax formulation. We illustrate the feasibility of the proposed method and highlight its advantage over the classical setting of tracking the Neumann data through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lacey AA, Shillor M (1987) Electrochemical and electro-discharge machining with a threshold current. IMA J Appl Math 39:131–142

    Article  MathSciNet  MATH  Google Scholar 

  2. Friedman A (1984) Free boundary problem in fluid dynamics, Astérisque. Soc Math Fr 118:55–67

    Google Scholar 

  3. Friedman A (2000) Free boundary problems in science and technology. Not AMS 47:854–861

    MathSciNet  MATH  Google Scholar 

  4. Acker A (1981) An extremal problem involving distributed resistance. SIAM J Math Anal 12:169–172

    Article  MathSciNet  MATH  Google Scholar 

  5. Acker A (1977) Heat flow in equalities with applications to heat flow optimization problems. SIAM J Math Anal 8:604–618

    Article  MathSciNet  MATH  Google Scholar 

  6. Crank J (1984) Free and moving boundary problems. Oxford University Press, New York

    MATH  Google Scholar 

  7. Fasano A (1992) Some free boundary problems with industrial applications. In: Delfour M (ed) Shape optimization and free boundaries, vol 380. Kluwer, Dordrecht

    Google Scholar 

  8. Tiihonen T (1997) Shape optimization and trial methods for free boundary problems. ESAIM Math Model Num 31(7):805–825

    Article  MathSciNet  MATH  Google Scholar 

  9. Haslinger J, Kozubek T, Kunish K, Peichl GH (2003) Shape optimization and fictitious domain approach for solving free-boundary value problems of Bernoulli type. Comput Optim Appl 26:231–251

    Article  MathSciNet  MATH  Google Scholar 

  10. Ito K, Kunisch K, Peichl GH (2006) Variational approach to shape derivative for a class of Bernoulli problem. J Math Anal Appl 314:126–149

    Article  MathSciNet  MATH  Google Scholar 

  11. Haslinger J, Ito K, Kozubek T, Kunish K, Peichl GH (2003) On the shape derivative for problems of Bernoulli type. Interfaces Free Bound 11:317–330

    MathSciNet  MATH  Google Scholar 

  12. Eppler K, Harbrecht H (2009) Tracking Neumann data for stationary free boundary problems. SIAM J Control Optim 48:2901–2916

    Article  MathSciNet  MATH  Google Scholar 

  13. Eppler K, Harbrecht H (2010) Tracking the Dirichlet data in \(L^2\) is an ill-posed problem. J Optim Theory Appl 145:17–35

    Article  MathSciNet  MATH  Google Scholar 

  14. Eppler K, Harbrecht H (2012) On a Kohn–Vogelius like formulation of free boundary problems. Comput Optim Appl 52:69–85

    Article  MathSciNet  MATH  Google Scholar 

  15. Ben Abda A, Bouchon F, Peichl GH, Sayeh M, Touzani R (2013) A Dirichlet–Neumann cost functional approach for the Bernoulli problem. J Eng Math 81:157–176

    Article  MathSciNet  MATH  Google Scholar 

  16. Bacani JB, Peichl GH (2013) On the first-order shape derivative of the Kohn–Vogelius cost functional of the Bernoulli problem. Abstr Appl Anal 2013 Article ID 384320

  17. Bacani JB, Peichl GH (2014) Solving the exterior Bernoulli problem using the shape derivative approach. Mathematics and computing 2013. International conference in Haldia, India. In: Springer proceedings in mathematics and statistics, vol 91. Springer, New York, XXII, p 305

  18. Rabago JFT, Bacani JB (2017) Shape optimization approach to the Bernoulli problem: a Lagrangian formulation. IAENG Int J Appl Math 47(4):417–424

    MathSciNet  Google Scholar 

  19. Rabago JFT, Bacani JB (2018) Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation. Commun Pur Appl Anal 17(6):2683–2702

    Article  MathSciNet  MATH  Google Scholar 

  20. Ito K, Kunisch K, Peichl GH (2008) Variational approach to shape derivatives. ESAIM Control Optim Calc Var 14:517–539

    Article  MathSciNet  MATH  Google Scholar 

  21. Delfour MC, Zolésio J-P (2011) Shapes and geometries: metrics, analysis, differential calculus, and optimization, 2nd ed. Adv Des Control 22 SIAM, Philadelphia

  22. Delfour MC, Zolésio J-P (1988) Shape sensitivity analysis by min max differentiability. SIAM J Control Optim 26(4):834–862

    Article  MathSciNet  MATH  Google Scholar 

  23. Sokolowski J, Zolésio J-P (1992) Introduction to shape optimization: shape sensitivity analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Ekeland I, Temam R (1976) Convex analysis and variational problems. North-Holland Publishing Co, Amsterdam. Translated from the French, studies in mathematics and its applications, vol 1

  25. Correa R, Seeger A (1985) Directional derivative of a minimax function. Nonlinear Anal Theory Meth Appl 9:13–22

    Article  MathSciNet  MATH  Google Scholar 

  26. Gilbarg D, Trudinger NS (1983) Elliptic partial differential equations of second order. Springer, Berlin

    Book  MATH  Google Scholar 

  27. Kashiwabara T, Colciago CM, Dedè L, Quarteroni A (2015) Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM J Numer Anal 53(1):105–126

    Article  MathSciNet  MATH  Google Scholar 

  28. Bouchon F, Clain S, Touzani R (2005) Numerical solution of the free boundary Bernoulli problem using a level set formulation. Comput Method Appl Mech Eng 194:3934–3948

    Article  MathSciNet  MATH  Google Scholar 

  29. Flucher M, Rumpf M (1997) Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J Reine Angew Math 486:165–204

    MathSciNet  MATH  Google Scholar 

  30. Haddar H, Kress R (2016) A conformal mapping algorithm for the Bernoulli free boundary value problem. Math Methods Appl Sci 39:2477–2487

    Article  MathSciNet  MATH  Google Scholar 

  31. Kress R (2017) On Trefftz’ integral equation for the Bernoulli free boundary value problem. Numer Math 136(2):503–522

    Article  MathSciNet  MATH  Google Scholar 

  32. Trefftz E (1916) Über die Kontraktion kreisförmiger Flüssigkeitsstrahlen. Z Math Phys 64:34–61

    MATH  Google Scholar 

  33. Harbrecht H, Mitrou G (2015) Stabilization of the trial method for the Bernoulli problem in case of prescribed Dirichlet data. Math Methods Appl Sci 38:2850–2863

    Article  MathSciNet  MATH  Google Scholar 

  34. Harbrecht H, Mitrou G (2014) Improved trial methods for a class of generalized Bernoulli problems. Math Anal Appl 420:177–194

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuster CM, Gremaud PA, Touzani R (2007) Fast numerical methods for Bernoulli free boundary problems. SIAM J Sci Comput 29:622–634

    Article  MathSciNet  MATH  Google Scholar 

  36. Novruzi A, Roche J-R (2000) Newton’s method in shape optimisation: a three-dimensional case. BIT Numer Math 40(1):102–120

    Article  MathSciNet  MATH  Google Scholar 

  37. Simon J (1989) Second variation for domain optimization problems. In: Kappel F, Kunisch K, Schappacher W (eds) Control and estimation of distributed parameter systems. International series of numerical mathematics, no 91, pp 361–378. Birkhäuser, Basel

  38. Neuberger J (2010) In: Morel J-M, Teissier B (eds) Sobolev gradients and differential equations. Lecture notes in mathematics. Springer, Berlin

  39. Azegami H, Kaizu S, Shimoda M, Katamine E (1997) Irregularity of shape optimization problems and an improvement technique. In: Hernandez S, Brebbia CA (eds) Computer aided optimization design of structures V. Computational Mechanics Publications, Southampton, pp 309–326

    Google Scholar 

  40. Mohammadi B, Pironneau O (2001) Applied shape optimization in fluids. Oxford University Press Inc, New York

    MATH  Google Scholar 

  41. Azegami H (2016) Solution of shape optimization problem and its application to product design. Mathematical analysis of continuum mechanics and industrial applications. In: Itou H, Kimura M, Chalupecký V, Ohtsuka K, Tagami D, Takada A (eds) Mathematics for industry 26. Springer, Singapore, pp 83–98

    Google Scholar 

  42. Azegami H, Wu ZQ (1996) Domain optimization analysis in linear elastic problems: approach using traction method. SME Int J Ser A 39(2):272–278

    Google Scholar 

  43. Azegami H, Shimoda M, Katamine E, Wu ZC (1995) A domain optimization technique for elliptic boundary value problems. In: Hernandez S, El-Sayed M, Brebbia CA (eds) Computer aided optimization design of structures IV, structural optimization. Computational Mechanics Publications, Southampton, pp 51–58

    Google Scholar 

  44. Azegami H (1994) A solution to domain optimization problems. Trans Jpn Soc Mech Engs Ser A 60:1479–1486 (in Japanese)

    Article  Google Scholar 

  45. Henrot A, Pierre M (2018) Shape variation and optimization: a geometrical analysis. Tracts in mathematics 28 European Mathematical Society, Zürich

  46. Beurling A (1957) On free boundary problems for the Laplace equation, Seminars on analytic functions, vol 1. Institute of Advance Studies Seminars, Princeton, pp 248–263

  47. Alt A, Caffarelli LA (1981) Existence and regularity for a minimum problem with free boundary. J Reine Angew Math 325:105–144

    MathSciNet  MATH  Google Scholar 

  48. Henrot A, Shahgholian H (1997) Convexity of free boundaries with Bernoulli type boundary condition. Nonlinear Anal Theory Methods Appl 28(5):815–823

    Article  MathSciNet  MATH  Google Scholar 

  49. Henrot A, Shahgholian H (2000) Existence of classical solution to a free boundary problem for the \(p\)-Laplace operator: (II) the interior convex case. Indiana Univ Math J 49(1):311–323

    Article  MathSciNet  MATH  Google Scholar 

  50. Cardaliaguet P, Tahraoui R (2002) Some uniqueness results for the Bernoulli interior free-boundary problems in convex domains. Electron J Differ Equ 102:1–16

    MathSciNet  MATH  Google Scholar 

  51. Hecht F (2012) New development in FreeFem++. J Numer Math 20(3–4):251–265

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee for carefully handling and examining the previous version of the manuscript. His/her valuable comments and suggestions greatly improved the presentation and quality of the paper. The first author greatly acknowledges the scholarship support provided by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) during his PhD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Fergy T. Rabago.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: the theorem of Correa and Seeger

Appendix: the theorem of Correa and Seeger

We first introduce some notations. Consider a functional \(G:[0,{\varepsilon }]\times X \times Y \rightarrow \mathbb {R}\), for some \({\varepsilon } > 0\) and the topological spaces X and Y. For each \(t \in [0, {\varepsilon }]\), define \(\displaystyle g(t) = \inf \nolimits _{x\in X} \sup \nolimits _{y\in Y} G(t,x,y)\) and \(\displaystyle h(t) = \sup \nolimits _{y\in Y} \inf \nolimits _{x\in X} G(t,x,y)\), and the associated sets \(\displaystyle X(t) = \big \{ \hat{x} \in X : \sup \nolimits _{y\in Y} G(t,\hat{x}, y) = g(t)\big \}\) and \(\displaystyle Y(t) = \big \{ \hat{y} \in Y : \inf \nolimits _{x\in X} G(t,x,\hat{y}) = h(t)\big \}\).

Given the above definitions, we introduce the set of saddle points\(S(t)=\{(\hat{x},\hat{y})\in X\times Y : g(t) = G(t, \hat{x}, \hat{y}) = h(t)\}\), which may be empty. In general, the inequality \(h(t) \leqslant g(t)\) holds and when \(h(t) = g(t)\), we exactly have \(S(t)=X(t) \times Y(t)\). Here, we are particularly interested on the situation when G admits saddle points for all \(t \in [0,{\varepsilon }]\).

Now, we quote an improved version [21, Theorem 5.1, pp. 556–559] of the theorem of Correa and Seeger. This result provides realistic conditions under which the existence of the limit \(dg(0) = \lim _{t\searrow 0} (g(t) - g(0))/t\) is guaranteed.

Theorem 1

([25]) Let X, Y, G and \({\varepsilon }\) be given as previously. Assume that the following assumptions hold:

  1. (H1)

    for all \(t \in [0,\varepsilon ] \), the set S(t) is non-empty;

  2. (H2)

    the partial derivative \(\partial _tG(t,x,y)\) exists for all \((t, x,y) \in [0,\varepsilon ] \times X \times Y\);

  3. (H3)

    for any sequence \(\{t_n\}_{n\in \mathbb {N}}\), with \(t_n \rightarrow 0\), there exists a subsequence \(\{t_{n_k}\}_{k\in \mathbb {N}}\) and \(x^0 \in X(0)\), \(x_{n_k} \in X(t_{n_k})\) such that for all \(y \in Y(0)\), \(\liminf _{\begin{array}{c} t\searrow 0\\ k \rightarrow \infty \end{array}} \partial _tG(t, x_{n_k} , y) \geqslant \partial _tG(0, x^0, y)\); and

  4. (H4)

    for any sequence \(\{t_n\}_{n\in \mathbb {N}}\), with \(t_n \rightarrow 0\), there exists a subsequence \(\{t_{n_k}\}_{k\in \mathbb {N}}\) and \(y^0 \in Y(0)\), \(y_{n_k} \in Y(t_{n_k})\) such that for all \(x \in X(0)\), \(\limsup _{\begin{array}{c} t\searrow 0\\ k \rightarrow \infty \end{array}} \partial _tG(t, x, y_{n_k}) \leqslant \partial _tG(0, x, y^0)\).

Then, there exists \((x^0, y^0) \in X(0) \times Y(0)\) such that \(\displaystyle \frac{{\mathrm{d}}g}{{\mathrm{d}}t}(0) = \partial _tG(0, x^0, y^0)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabago, J.F.T., Azegami, H. An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data. J Eng Math 117, 1–29 (2019). https://doi.org/10.1007/s10665-019-10005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10005-x

Keywords

Navigation