Skip to main content

Advertisement

Log in

A step function density profile model for the convective stability of CO\(_2\) geological sequestration

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The convective stability associated with carbon sequestration is usually investigated by adopting an unsteady diffusive basic profile to account for the space and time development of the carbon-saturated boundary layer instability. The method of normal modes is not applicable due to the time dependence of the nonlinear base profile. Therefore, the instability is quantified either in terms of critical times at which the boundary layer instability sets in or in terms of long-time evolution of initial disturbances. This paper adopts an unstably stratified basic profile having a step function density with top heavy carbon-saturated layer (boundary layer) overlying a lighter carbon-free layer (ambient brine). The resulting configuration resembles that of the Rayleigh–Taylor problem with buoyancy diffusion at the interface separating the two layers. The discontinuous reference state satisfies the governing system of equations and boundary conditions and pertains to an unstably stratified motionless state. Our model accounts for anisotropy in both diffusion and permeability and chemical reaction between the carbon dioxide-rich brine and host mineralogy. We consider two cases for the boundary conditions, namely an impervious lower boundary with either a permeable (one-sided model) or poorly permeable upper boundary. These two cases possess neither steady nor unsteady unstably stratified equilibrium states. We proceed by supposing that the carbon dioxide that has accumulated below the top cap rock forms a layer of carbon-saturated brine of some thickness that overlies a carbon-free brine layer. The resulting stratification remains stable until the thickness, and by the same token, the density, of the carbon-saturated layer is sufficient to induce the fluid to overturn. The existence of a finite threshold value for the thickness is due to the stabilizing influence of buoyancy diffusion at the interface between the two layers. With this formulation for the reference state, the stability calculations will be in terms of critical boundary layer thickness instead of critical times, although the two formulations are homologous. This approach is tractable by the classical normal-mode analysis. Even though it yields only conservative threshold instability conditions, it offers the advantage for an analytically tractable study that puts forth expressions for the carbon concentration convective flux at the interface and explores the flow patterns through both linear and weakly nonlinear analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Change, Intergovernmental Panel On Climate PCC (2007) Aspectos Regionais e Setoriais da Contribuio do Grupo de Trabalho II ao 4 Relatrio de Avaliao Mudana Climtica 2007 do IPCC

  2. Plain CO\(_2\) Reduction (PCOR) Partnership. http://www.undeerc.org/pcor/

  3. Pacala S, Socolow R (2004) Wedges: Solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  ADS  Google Scholar 

  4. Matter JM, Stute M, Snbjrnsdottir SO, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E, Axelsson G, Alfredsson HA, Wolff-Boenisch D, Mesfin K, de la Reguera Taya DF, Hall J, Dideriksen K, Broecker WS (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:1312–1314

    Article  ADS  Google Scholar 

  5. Barba Rossa G, Cliffe KA, Power H (2017) Effects of hydrodynamic dispersion on the stability of buoyancy-driven porous media convection in the presence of first order chemical reaction. J Eng Math. 103:55–76

  6. De Paoli M, Zonta F, Alfredo Soldati A (2016) Influence of anisotropic permeability on convection in porous media: Implications for geological CO\(_2\) sequestration. Phys. Fluids 28:056601

    Article  ADS  Google Scholar 

  7. Xu X, Chen S, Zhang D (2006) Convective stability analysis of the long term storage of carbon dioxide in deep saline aquifers. Adv Water Resour 29:397–407

    Article  ADS  Google Scholar 

  8. Batchelor GK, Nitsche J (1991) Instability of stationary unbounded stratified fluid. J Fluid Mech 227:357–391

    Article  ADS  MATH  Google Scholar 

  9. Simitev RD, Busse FH (2010) Problems of astrophysical convection: thermal convection in layers without boundaries. Proceedings of the 2010 Summer Program. Center of Turbulence Research, Stanford University, pp 485–492

  10. Hadji L, Shahmurov S, Aljahdaly NH (2016) Thermal convection induced by an infinitesimally thin and unstably stratified layer. J Non-equilib Themodyn 41:279–294

  11. Foster T (1965) Onset of convection in a layer of fluid cooled from above. Phys. Fluids 8:1770–1774

    Article  ADS  Google Scholar 

  12. Foster T (1969) Onset of manifest convection in a layer of fluid with a time-dependent surface temperature. Phys. Fluids 12:2482–2487

    Article  ADS  Google Scholar 

  13. Kneafsey TJ, Karsten P (2010) Laboratory flow experiments for visualizing carbon dioxide-induced, density- driven brine convection. Transp Porous Media 82:123–139

    Article  Google Scholar 

  14. Neufeld JA, Hesse MA, Riaz A, Hallaworth MA, Tchelepi HA (2010) Convective dissolution of carbon dioxide in saline aquifers. Geophys Res Lett 37:L22404

    Article  ADS  Google Scholar 

  15. Hill AA, Morad MR (2014) Convective stability of carbon sequestration in anisotropic porous media. Proc R Soc A 470:20140373

    Article  ADS  Google Scholar 

  16. Bhadauria BS (2012) Double-diffusive convection in a saturated anisotropic porous layer with internal heat source. Transp Porous Media 92:299–320

    Article  MathSciNet  Google Scholar 

  17. Horton CW, Rogers FT Jr (1945) Convection currents in a porous media. J Appl Phys 16:367–370

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Camb Philos Soc 44:508–521

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. De La Torre JM, Busse FH (1995) Stability of two-dimensional convection in a fluid saturated porous medium. J Fluid Mech 292:305–323

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Barletta A, Tyvand PA, Nygard HS (2015) Onset of thermal convection in a porous layer with mixed boundary conditions. J Eng Math 91:105–120

    Article  MathSciNet  Google Scholar 

  21. Riaz A, Hesse M, Tchelepi HA, Orr FM (2006) Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J Fluid Mech 548:87–111

    Article  ADS  MathSciNet  Google Scholar 

  22. Ennis-King J, Preston I, Paterson L (2005) Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys Fluids 17:084107

    Article  ADS  MATH  Google Scholar 

  23. Slim AC, Ramakrishnan TS (2010) Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys Fluids 22:124103

    Article  ADS  Google Scholar 

  24. Slim AC (2014) Solutal-convection regimes in a two-dimensional porous medium. J Fluid Mech 741:461–491

    Article  ADS  Google Scholar 

  25. Klinkenberg K (1941) The permeability of porous media to liquids and gases. In: Drilling and production practice. American Petroleum Institute, New York

  26. Rasenat S, Busse FH, Rehberg I (1989) A theoretical and experimental study of double-layer convection. J Fluid Mech 199:519–540

    Article  ADS  MATH  Google Scholar 

  27. Busse FH, Riahi N (1980) Nonlinear thermal convection with poorly conducting boundaries. J Fluid Mech 96:243–256

    Article  ADS  MATH  Google Scholar 

  28. Chapman CJ, Proctor MRE (1980) Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries. J Fluid Mech 101:759–782

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Nayfeh AH (2004) Introduction to perturbation techniques, vol 139. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Liet Vo for useful conversations and two anonymous reviewers whose comments have improved the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layachi Hadji.

Appendix

Appendix

In the process of conducting the linear stability analysis, the homogeneous linear system of equations obtained through the matching conditions at \(Z_0\) is described by

$$\begin{aligned} \left\{ \begin{array}{ll} Q_{11}\,A^- + Q_{12}\,B^-+ Q_{13}\,A^+ + Q_{14}\,B^+ &{}= 0, \\ Q_{21}\,A^- + Q_{22}\,B^-+ Q_{23}\,A^+ + Q_{24}\,D^+ &{}= 0, \\ Q_{31}\,A^- + Q_{32}\,B^-+ Q_{33}\,A^+ + Q_{34}\,B^+ &{}= 0, \\ Q_{41}\,A^- + Q_{42}\,B^-+ Q_{43}\,A^+ + Q_{44}\,B^+ &{}= 0, \\ \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} Q_{11}= & {} \sinh {(\alpha Z_0)}, Q_{12}=Z_0\,\sinh {(\alpha Z_0)} +(\beta /\alpha ) Z_0\,\cosh {(\alpha Z_0)}, Q_{13}=-\sinh {(\alpha (Z_0-1))},\\ Q_{14}= & {} -(Z_0-1)\,\sinh {(\alpha (Z_0-1))} +(\beta /\alpha ) (Z_0-1)\,\cosh {(\alpha (Z_0-1))},\\ Q_{21}= & {} \alpha \,\cosh {(\alpha Z_0)}, Q_{22}=(1+\beta \,Z_0)\,\sinh {(\alpha Z_0)}+(\alpha Z_0-\beta /\alpha )\,\cosh {(\alpha Z_0)},\\ Q_{23}= & {} -\alpha \cosh {(\alpha (Z_0-1))}, \\ Q_{24}= & {} -(1-\beta (Z_0-1))\sinh {(\alpha (Z_0-1)) }- (\alpha (Z_0-1)-\beta /\alpha )\cosh {(\alpha (Z_0-1)},\\ Q_{31}= & {} \alpha ^2 \sinh {(\alpha Z_0)}, Q_{33}= -\alpha ^2 \sinh {(\alpha (Z_0-1))},\\ Q_{32}= & {} (2\alpha +\beta \alpha Z_0)\cosh {(\alpha Z_0)} + (\alpha ^2 Z_0 + 2 \beta )\sinh {(\alpha Z_0)},\\ Q_{34}= & {} -(2\alpha - \beta \alpha (Z_0-1)) \cosh {(\alpha (Z_0-1))} - (\alpha ^2 (Z_0-1)-2 \beta ) \sinh {(\alpha (Z_0-1))}, \\ Q_{41}= & {} -\alpha ^3\,\cosh {(\alpha Z_0)}- R \alpha ^2 \sinh {(\alpha Z_0)}, \\ Q_{43}= & {} \alpha ^3\,\cosh {(\alpha (Z_0-1))},\\ Q_{42}= & {} -(3 \alpha \,\beta + Z_0\,\alpha ^3) \cosh {(\alpha Z_0)} - (3 \alpha ^2 + \beta Z_0 \alpha ^2) \sinh {(\alpha Z_0)}- R \alpha ^2 (Z_0 \sinh {(\alpha Z_0)}\\&\quad +\, Z_0 (\beta /\alpha ) \cosh {(\alpha (Z_0-1)}),\\ Q_{44}= & {} -(3 \alpha \,\beta + (Z_0-1) \alpha ^3) \cosh {(\alpha (Z_0-1)} + (3 \alpha ^2 - \beta (Z_0-1) \alpha ^2) \sinh {(\alpha (Z_0-1))}, \\ P_{41}= & {} -\alpha ^3\,\cosh {(\alpha Z_0)}, P_{42}=-(3 \alpha \,\beta + Z_0\,\alpha ^3) \cosh {(\alpha Z_0)} - (3 \alpha ^2 + \beta Z_0 \alpha ^2) \sinh {(\alpha Z_0)},\\ M_{41}= & {} \alpha ^2 \sinh {(\alpha Z_0)}, M_{42}=\alpha ^2 (Z_0 \sinh {(\alpha Z_0)} + Z_0 (\beta /\alpha ) \cosh {(\alpha (Z_0-1)}).\\ \end{aligned}$$

The matrices \(\mathbf{Q}_1\) and \(\mathbf{Q}_2\) are given by

$$\begin{aligned} \mathbf{Q_1}=\left[ \begin{array}{cccc} Q_{11} &{} \quad Q_{12} &{} \quad Q_{13} &{} \quad Q_{14} \\ Q _{21} &{} \quad Q_{22} &{} \quad Q_{23} &{} \quad Q_{24} \\ Q_{31} &{} \quad Q_{32} &{} \quad Q_{33} &{} \quad Q_{34} \\ P_{41} &{} \quad P_{42} &{} \quad Q_{43} &{} \quad Q_{44} \end{array} \right] , \qquad \mathbf{Q_2}=\left[ \begin{array}{cccc} Q_{11} &{} \quad Q_{12} &{} \quad Q_{13} &{} \quad Q_{14} \\ Q _{21} &{} \quad Q_{22} &{} \quad Q_{23} &{} \quad Q_{24} \\ Q_{31} &{} \quad Q_{32} &{} \quad Q_{33} &{} \quad Q_{34} \\ M_{41} &{} \quad M_{42} &{} \quad 0 &{} \quad 0 \end{array} \right] . \quad \end{aligned}$$

The eigenfunctions for the linear problem for the case \(c=0\) at \(z=1\) are given by

$$\begin{aligned}&W^-(z)=(1-1.3783\,z)\sinh {(\alpha _C z)}, \end{aligned}$$
(52)
$$\begin{aligned}&W^+(z)= 0.9482(z-1)\,\cosh {(\alpha _C(z-1))}-0.8876 \sinh {(\alpha _C(z-1))}, \end{aligned}$$
(53)
$$\begin{aligned}&{\mathscr {J}}= \frac{\alpha _C^2\,(1-1.3783 Z_{0C}) \sinh {(\alpha _C Z_{0C})}}{\alpha _C\,\cosh {\alpha _C}\bigl (\cosh {(\alpha _C(1-Z_{0C})}/\sinh {(\alpha _C(1-Z_{0C})} \bigr )-1},\nonumber \\&S^-(z)=-{\mathscr {J}} \cosh {(\alpha _C z)}, \end{aligned}$$
(54)
$$\begin{aligned}&S^+(z) = \frac{{\mathscr {J}} \cosh {(\alpha _C Z_{0C})} }{\sinh {(\alpha _C(1-Z_{0C}))}}\,\sinh {(\alpha _C(1-z))}, \end{aligned}$$
(55)

where \(\alpha _C=2.4\) and \(Z_{0C}=0.38\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanstall, C.T., Hadji, L. A step function density profile model for the convective stability of CO\(_2\) geological sequestration. J Eng Math 108, 53–71 (2018). https://doi.org/10.1007/s10665-017-9907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-017-9907-9

Keywords

Navigation