Skip to main content
Log in

Equilibrium of elastic lattice shells

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A model for shells consisting of a continuous distribution of embedded rods is developed in the framework of the direct theory of second-gradient elastic surfaces. The shell is constitutively sensitive to a convenient measure of the gradient of strain in addition to the metric and curvature of standard shell theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flügge W (1973) Stresses in shells, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Wang W-B, Pipkin AC (1986) Inextensible networks with bending stiffness. Q J Mech Appl Math 39:343–359

    Article  MATH  Google Scholar 

  3. Wang W-B, Pipkin AC (1986) Plane deformations of nets with bending stiffness. Acta Mech 65:263–279

    Article  MATH  Google Scholar 

  4. Steigmann DJ, dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional bending, twisting and stretching. Acta Mech Sin 31:373–382

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Dill EH (1992) Kirchhoff’s theory of rods. Arch Hist Exact Sci 44:1–23

    Article  MathSciNet  MATH  Google Scholar 

  6. Steigmann DJ, Pipkin AC (1991) Equilibrium of elastic nets. Philos Trans R Soc Lond A335:419–454

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Giorgio I, Grygoruk R, dell’Isola F, Steigmann DJ (2015) Pattern formation in the three-dimensional deformations of fibered sheets. Mech Res Commun 69:164–171

    Article  Google Scholar 

  8. Giorgio I, Della Corte A, dell’Isola F, Steigmann DJ (2016) Buckling modes in pantographic lattices. C R Mec II B 344:487–501

    Article  Google Scholar 

  9. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  10. Toupin RA (1964) Theories of elasticity with couple-stress. Arch Ration Mech Anal 17:85–112

    Article  MathSciNet  MATH  Google Scholar 

  11. Germain P (1973) The method of virtual power in continuum mechanics, part 2: microstructure. SIAM J Appl Math 25:556–575

    Article  MATH  Google Scholar 

  12. Spencer AJM, Soldatos KP (2007) Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int J Non-Linear Mech 42:355–368

    Article  Google Scholar 

  13. dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”. Z Angew Math Phys 63:1119–1141

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen H, DeSilva CN (1966) Nonlinear theory of elastic surfaces. J Math Phys 7:246–253

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cohen H, DeSilva CN (1968) On a nonlinear theory of elastic shells. J Mécanique 7:459–464

    Google Scholar 

  16. Balaban MM, Green AE, Naghdi PM (1967) Simple force multipoles in the theory of deformable surfaces. J Math Phys 8:1026–1036

    Article  ADS  Google Scholar 

  17. Gusev AA, Lurie AS (2015) Symmetry conditions in strain gradient elasticity. Math Mech Solids (in press). doi:10.1177/1081286515606960

  18. Bleustein J (1967) A note on the boundary conditions of Toupin’s strain-gradient theory. Int J Solids Struct 3:1053–1057

    Article  Google Scholar 

  19. Madeo A, Ghiba I-D, Neff P, Münch I (2016) A new view on boundary conditions in the Grioli–Koiter–Mindlin–Toupin indeterminate couple stress model. Eur J Mech A 59:294–322

    Article  MathSciNet  Google Scholar 

  20. Murdoch AI, Cohen H (1979) Symmetry considerations for material surfaces. Arch Ration Mech Anal 72:61–98 (Addendum (1981) Arch Ration Mech Anal 76:393–400.)

  21. Ciarlet PG (2005) An introduction to differential geometry with applications to elasticity. J Elast 78–79:3–201

    MathSciNet  MATH  Google Scholar 

  22. Lovelock D, Rund H (1989) Tensors, differential forms and variational principles. Dover, New York

    MATH  Google Scholar 

  23. Steigmann DJ, Ogden RW (1999) Elastic surface–substrate interactions. Proc R Soc Lond A455:437–474

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Steigmann DJ (1999) Fluid films with curvature elasticity. Arch Ration Mech Anal 150:127–152

    Article  MathSciNet  MATH  Google Scholar 

  25. Eugster SR, dell’Isola F (2017) Exegesis of the introduction and sect. I from Fundamentals of the Mechanics of Continua by E. Hellinger. Z Angew Math Mech (in press). doi:10.1002/zamm.201600108

Download references

Acknowledgements

Support provided by the US National Science Foundation through Grant CMMI 1538228 is gratefully acknowledged. Thanks are extended to F. dell’Isola, University of Rome, for sharing his insights on the nature of double forces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Steigmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steigmann, D.J. Equilibrium of elastic lattice shells. J Eng Math 109, 47–61 (2018). https://doi.org/10.1007/s10665-017-9905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-017-9905-y

Keywords

Navigation