Skip to main content
Log in

Solution of regular second- and fourth-order Sturm–Liouville problems by exact dynamic stiffness method analogy

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper treats all regular second- or fourth-order Sturm–Liouville (SL) problems as generalised vibration problems of non-uniform structural members on elastic foundations. Hence such SL problems can be solved by the Wittrick–Williams (WW) algorithm and the authors’ recursive second-order exact dynamic stiffness vibration method. The coefficients of the mathematical SL problems range more widely than for structural vibration problems, and so the method must account for additional possibilities, e.g. the equivalent of large negative stiffness continuous elastic supports. The method computes exact dynamic stiffnesses and their derivatives with respect to the eigenparameter accurately by solving the associated linear boundary-value problems using a standard adaptive solver. The difficulty of calculating the number of exact fixed-end eigenvalues below any trial eigenvalue needed by the WW algorithm is overcome by dividing the whole SL problem domain into an appropriate mesh, in which each element is guaranteed to have all fixed-end eigenvalues above the current trial eigenvalue. Results for second- and fourth-order SL problems shown in the literature to be particularly challenging demonstrate the effectiveness, efficiency, accuracy and reliability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pruess S, Fulton CT (1993) Mathematical software for Sturm-Liouville problems. ACM Trans Math Softw 19:360–376

    Article  MATH  Google Scholar 

  2. Bailey PB, Everitt WN, Zettl A (2001) Algorithm 810: the SLEIGN2 Sturm-Liouville code. ACM Trans Math Softw 27:143–192

    Article  MATH  Google Scholar 

  3. Numerical Algorithms Group Ltd (1999) NAG FORTRAN library manual. Numerical Algorithms Group Ltd, Oxford

    Google Scholar 

  4. Greenberg L, Marletta M (1997) Algorithm 775: the code SLEUTH for solving fourth order Sturm-Liouville problems. ACM Trans Math Softw 23:453–497

    Article  MATH  MathSciNet  Google Scholar 

  5. Andrew AL (2003) Asymptotic correction of more Sturm-Liouville eigenvalue estimates. BIT Numer Math 43:485–503

    Article  MATH  MathSciNet  Google Scholar 

  6. Çelik İ (2005) Approximate computation of eigenvalues with Chebyshev collocation method. Appl Math Comput 168:125–134

    Article  MATH  MathSciNet  Google Scholar 

  7. Yuan Q, He Z, Leng H (2008) An improvement for Chebyshev collocation method in solving certain Sturm-Liouville problems. Appl Math Comput 195:440–447

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen L, Ma H (2008) Approximate solution of the Sturm-Liouville problems with Legendre–Galerkin–Chebyshev collocation method. Appl Math Comput 206:748–754

    Article  MATH  MathSciNet  Google Scholar 

  9. Attili BS, Lesnic D (2006) An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems. Appl Math Comput 182:1247–1254

    Article  MATH  MathSciNet  Google Scholar 

  10. Yuan S, Ye K, Williams FW, Kennedy D (2003) Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices. Int J Numer Methods Eng 56:1795–1814

    Article  MATH  Google Scholar 

  11. Eisenberger M (1990) Exact static and dynamic stiffness matrices for general variable cross-section members. AIAA J 28:1105–1109

    Article  ADS  MATH  Google Scholar 

  12. Eisenberger M (1990) An exact element method. Int J Numer Methods Eng 30:363–370

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen YH, Sheu JT (1996) Beam length and dynamic stiffness. Comput Methods Appl Mech Eng 129:311–318

    Article  ADS  MATH  Google Scholar 

  14. Golub GH, Van Loan CF (1996) Matrix computations. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  15. Williams FW, Wittrick WH (1970) An automatic computational procedure for calculating natural frequencies of skeletal structures. Int J Mech Sci 12:781–791

    Article  Google Scholar 

  16. Wittrick WH, Williams FW (1971) A general algorithm for computing natural frequencies of elastic structures. Q J Mech Appl Math 24:263–284

    Article  MATH  MathSciNet  Google Scholar 

  17. Ascher U, Christiansen J, Russell RD (1981) Collocation software for boundary value ODEs. ACM Trans Math Softw 7:209–222

    Article  MATH  Google Scholar 

  18. Djoudi MS, Kennedy D, Williams FW, Yuan S, Ye K (2005) Exact substructuring in recursive Newton’s method for solving transcendental eigenproblems. J Sound Vib 280:883–902

    Article  ADS  Google Scholar 

  19. Yuan S, Ye K, Xiao C, Williams FW, Kennedy D (2007) Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations and Bernoulli-Euler column buckling. J Sound Vib 303:526–537

    Article  ADS  MATH  Google Scholar 

  20. Ascher U, Christiansen J, Russell RD (1981) Algorithm 569, COLSYS: collocation software for boundary value ODEs [D2]. ACM Trans Math Softw 7:223–229

    Article  Google Scholar 

  21. Bhatt P (1999) Structures. Addison Wesley Longman, Harlow

    Google Scholar 

  22. Greenberg L (1991) An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues. SIAM J Math Anal 22:1021–1042

    Article  MATH  MathSciNet  Google Scholar 

  23. Greenberg L, Marletta M (1995) Oscillation theory and numerical solution of fourth order Sturm-Liouville problems. IMA J Numer Anal 15:319–356

    Article  MATH  MathSciNet  Google Scholar 

  24. Pryce JD (1993) Numerical solution of Sturm-Liouville problems. Clarendon, Oxford

    MATH  Google Scholar 

  25. Kong Q, Wu H, Zettl A (1997) Dependence of eigenvalues on the problem. Math Nachr 188:173–201

    Article  MATH  MathSciNet  Google Scholar 

  26. Pruess S, Fulton CT, Xie Y (1994) Performance of the Sturm-Liouville software package SLEDGE. Technical report MCS-91-19. Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden

  27. Pryce JD (1986) Error control of phase-function shooting methods for Sturm-Liouville problems. IMA J Numer Anal 6:102–123

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (50678093, 51078198 and 51078199), the Chinese Ministry of Education (IRT00736), the UK Engineering and Physical Sciences Research Council (GR/R05406/01) and from the Cardiff Advanced Chinese Engineering Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, S., Ye, K., Xiao, C. et al. Solution of regular second- and fourth-order Sturm–Liouville problems by exact dynamic stiffness method analogy. J Eng Math 86, 157–173 (2014). https://doi.org/10.1007/s10665-013-9646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-013-9646-5

Keywords

Navigation