Skip to main content
Log in

Unsteady free convective boundary-layer flow near a stagnation point in a heat-generating porous medium

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The free convection boundary-layer flow near a stagnation point in a porous medium is considered when there is local heat generation at a rate proportional to (TT )p, (p ≥ 1), where T is the fluid temperature and T the ambient temperature. Two cases are treated, when the surface is thermally insulated and when heat is supplied at a constant (dimensionless) rate h s from the boundary. If h s = 0 the solution approaches a nontrivial steady state for time t large in which the local heating has a significant effect when p ≤ 2. For p > 2 the effects of the local heating become increasingly less important and the solution dies away, with the surface temperature being of O(t −1) for t large. When h s > 0 and there is heat input from the surface, the solution for p ≤ 2 again approaches a nontrivial steady state for t large and all h s . For p > 2 there is a critical value h s,crit (dependent on the exponent p) of h s such that the solution still approaches a nontrivial steady state if h s < h s,crit. For h s > h s,crit a singularity develops in the solution at a finite time, the nature of which is analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mealey L, Merkin JH (2008) Free convection boundary layers on a vertical surface in a heat generating porous medium. IMA J Appl Math 73: 231–253

    Article  MathSciNet  MATH  Google Scholar 

  2. Merkin JH (2008) Free convection boundary layers on a vertical surface in a heat generating porous medium: similarity solutions. Q J Mech Appl Math 61: 205–218

    Article  MathSciNet  MATH  Google Scholar 

  3. Merkin JH (2009) Natural convection boundary-layer flow in a heat generating porous medium with a prescribed heat flux. Z Angew Math Phys 60: 543–564

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bickley WG (1937) The plane jet. Philos Mag 23: 727–731

    MATH  Google Scholar 

  5. Glauert MB (1956) The wall jet. J Fluid Mech 1: 625–643

    Article  MathSciNet  ADS  Google Scholar 

  6. Sisson RA, Swift A, Wake GC, Gray BF (1992) The self-heating of damp cellulosic materials: I. High thermal conductivity and diffusivity. IMA J Appl Math 49: 273–291

    Article  MathSciNet  MATH  Google Scholar 

  7. Sexton MJ, Macaskill C, Gray BF (2001) Self-heating and drying in two-dimensional bagasse piles. Combst Theory Model 5: 517–536

    Article  ADS  MATH  Google Scholar 

  8. Gray BF, Sexton MJ, Halliburton B, Macaskill C (2002) Wetting-induced ignition in cellulosic materials. Fire Saf J 37: 465–479

    Article  Google Scholar 

  9. Postelnicu A, Grosan T, Pop I (2000) Free convection boundary-layer over a vertical permeable flat plate in a porous medium with internal heat generation. Int Commun Heat Mass Transf 27: 729–738

    Article  Google Scholar 

  10. Joshi MV, Gaitonde UN, Mitra SK (2006) Analytic study of natural convection in a cavity with volumetric heat generation. Trans ASME 128: 176–182

    Article  Google Scholar 

  11. Magyari E, Pop I, Postelnicu A (2007) Effect of the source term on steady free convection boundary layer flows over an vertical plate in a porous medium. Part 1. Transp Porous Media 67: 49–67

    Article  MathSciNet  Google Scholar 

  12. Mealey LR, Merkin JH (2009) Steady finite Rayleigh number convective flows in a porous medium with internal heat generation. Int J Therm Sci 48: 1068–1080

    Article  Google Scholar 

  13. Ingham, DB, Pop, I (eds) (2002) Transport phenomena in porous media II. Elsevier Science, Oxford

    MATH  Google Scholar 

  14. Nield DA, Bejan A (2006) Convection in porous media, 3rd edn. Springer, New York

    MATH  Google Scholar 

  15. Merkin JH, Pop I (2000) Free convection near stagnation point in a porous medium resulting from an oscillatory wall temperature. Int J Heat Mass Transf 43: 611–621

    Article  MATH  Google Scholar 

  16. NAG: Numerical Algorithm Group www.nag.co.uk

  17. Stewartson K (1964) The theory of laminar boundary layers in compressible fluids. Oxford Mathematical Monograph, Oxford University Press, Oxford

    MATH  Google Scholar 

  18. Stewartson K (1955) On asymptotic expansions in the theory of boundary layers. J Math Phys 13: 113–122

    MathSciNet  MATH  Google Scholar 

  19. Merkin JH (1985) On dual solutions occurring in mixed convection in a porous medium. J Eng Math 20: 171–179

    Article  MathSciNet  Google Scholar 

  20. Merkin JH, Mahmood T (1989) Mixed convection boundary layer similarity solutions: prescribed wall heat flux. J Appl Math Phys (ZAMP) 20: 51–68

    MathSciNet  Google Scholar 

  21. Ackroyd JAD (1967) On the laminar compressible boundary layer with stationary origin on a moving flat wall. Proc Camb Philos Soc 63: 871

    Article  ADS  MATH  Google Scholar 

  22. Cheng P, Minkowycz WJ (1977) Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J Geophys Res 82: 2040

    Article  ADS  Google Scholar 

  23. Slater LJ (1960) Confluent hypergeometric functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  24. Stewartson K (1958) On the Goldstein theory of laminar separation. Q J Mech Appl Math 11: 399–410

    Article  MathSciNet  MATH  Google Scholar 

  25. Fujita H (1966) On the blowing up of solutions of the Cauchy problem for u t = Δu + u 1+α. J Fac Sci Univ Tokyo Sect IA Math 16: 105–113

    Google Scholar 

  26. Levine HA (1990) The role of critical exponents in blowup theorems. SIAM Rev 32: 262–288

    Article  MathSciNet  MATH  Google Scholar 

  27. Merkin JH (2012) Natural convective boundary-layer flow in a heat generating porous medium with a constant surface heat flux Eur J Mech B/Fluids. doi:10.1016/j.euromechflu.2012.04.004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Merkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkin, J.H. Unsteady free convective boundary-layer flow near a stagnation point in a heat-generating porous medium. J Eng Math 79, 73–89 (2013). https://doi.org/10.1007/s10665-012-9560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-012-9560-2

Keywords

Navigation