Skip to main content
Log in

On turbulent separation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The present theoretical article, dedicated to the memory of James Lighthill and his research contributions, is directed towards the central features of turbulent separation. The focus is on the time-mean equations, where the ensemble-averaged motion for an incompressible fluid is modelled as planar and steady. Specific major recent developments are discussed which are closely concerned in one way or another with turbulent separation at increased Reynolds numbers. These developments include in particular the behaviour of relatively thick boundary layers, on the one hand, and the intricate behaviour of breakaway separation on the other. The article brings the two behaviours together in a discussion of large-scale separation structure and accompanying interactions. The work presented here applies to quite general turbulence models and for specific cases enables direct comparisons to be made with experiments. The work also leads to new suggestions involving a combination of low- and high-intensity turbulence for the fluid motion around a bluff body and in its wake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheichl B (2001) Asymptotic theory of marginal turbulent separation. PhD thesis, Vienna University of Technology

  2. Sakiadis B (1961) Boundary layer on continuous solid surface: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIchE J 7: 26–27

    Article  Google Scholar 

  3. Sakiadis B (1961) Boundary layer on continuous solid surface: II. The boundary-layer on a continuous flat surface. AIchE J 7: 26–27

    Article  Google Scholar 

  4. Afzal N (1961) Turbulent boundary layer on a moving continuous plate. Fluid Dyn Res 17: 181–194

    Article  MathSciNet  ADS  Google Scholar 

  5. Tsou FK, Sparrow EM, Goldstein RJ (1967) Flow and heat transfer in the boundary layer on a continuous moving surface. Int J Heat Mass Transfer 10: 219–235

    Article  Google Scholar 

  6. Cooper P (1971) Turbulent boundary Layer on a rotating disc calculated with an effective viscosity. AIAA J 9: 255–261

    Article  ADS  Google Scholar 

  7. Erian FF, Tong YH (1971) Turbulent flow due to a rotating disc. Phys Fluids 14: 2588–2591

    Article  ADS  Google Scholar 

  8. Launder BE, Sharma X (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1: 131–138

    Article  ADS  Google Scholar 

  9. Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266: 175–207

    Article  ADS  Google Scholar 

  10. Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 418: 231–264

    Article  MATH  ADS  Google Scholar 

  11. Cebeci T, Abbott DE (1975) Boundary layers on a rotating disc. AIAA J 13: 829–832

    Article  ADS  Google Scholar 

  12. Prandtl L (1952) Essentials of fluid dynamics. Blackie and Son Ltd, London

    MATH  Google Scholar 

  13. Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech IV: 1–51

    Article  Google Scholar 

  14. Schlichting H (1960) Boundary layer theory. McGraw-Hill Series in Mechanical Engineering, New York

    MATH  Google Scholar 

  15. Mellor GL (1972) The large Reynolds number, asymptotic theory of turbulent boundary layers. Int J Eng Sci 10: 851–873

    Article  MathSciNet  Google Scholar 

  16. Bush WB, Fendell FE (1972) Asymptotic analysis of turbulent channel and boundary-layer flow. J Fluid Mech 56: 657–681

    Article  MATH  ADS  Google Scholar 

  17. Neish A, Smith FT (1988) The turbulent boundary layer and wake of an aligned flat plate. J Eng Maths 22: 15–42

    Article  MATH  Google Scholar 

  18. McDarby JM, Smith FT (2007) Turbulent flow on a planar moving belt and a rotating disk: modelling and comparisons. J Fluid Mech 587: 255–270

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Scheichl B, Kluwick A (2007) Turbulent marginal separation and the turbulent Goldstein problem. AIAA 45(1): 20–36

    Article  Google Scholar 

  20. Scheichl B, Kluwick A (2007) A novel triple-deck problem for turbulent flows. In: Progress in Turbulence II proceedings of the iTi conference in turbulence 2005. Springer proceedings in Physics, vol 109. Springer, Berlin

  21. McDarby JM, Smith FT (2010) Turbulent interactions for rotating blades and wakes. J Eng Maths (accepted)

  22. von Kármán Th (1921) Laminare und turbulente Reibung. ZAMM 1(Part 4): 233–252

    Google Scholar 

  23. Neish A, Smith FT (1992) On turbulent separation in the flow past a bluff body. J Fluid Mech 241: 443–467

    Article  MathSciNet  ADS  Google Scholar 

  24. Scheichl B, Kluwick A, Smith FT (2010) Break-away separation for high turbulence intensity and large Reynolds number. J Fluid Mech (submitted)

  25. Gurevich MI (1979) Theory of jets in ideal fluids, 2nd edn. Academic Press, New York, London. Original Russian edition: 1965. Nauka, Moscow

  26. Eppler R (1954) Beiträge zur Theorie und Anwendung der Unstetigen Strömungen. Rat Mech Anal 3: 591–644 (in German)

    MathSciNet  Google Scholar 

  27. Zdravkovich MM (1997) Flow around circular cylinders. A comprehensive guide through flow phenomena, experiments, applications, mathematical models, and computer simulations, vol 1: fundamentals. Oxford University Press, Oxford

    Google Scholar 

  28. Jones GW, Cincotta J, Walker W (1969) Aerodynamic forces on a stationary and oscillating circular cylinder at high Reynolds numbers. NASA, R-300

  29. Batchelor GK (1956) A proposal concerning laminar wakes behind bluff bodies at large Reynolds number. J Fluid Mech 1(Pt 4): 388–398

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Wu Th Y (1972) Cavity and wake flows. Annu Rev Fluid Mech 4: 242–284

    Article  ADS  Google Scholar 

  31. Sychev VV, Ruban AI, Sychev VV, Korolev GL (1998) In: Messiter AF, Van Dyke M (eds) Asymptotic theory of separated flows. Cambridge University Press, Cambridge

  32. Scheichl B, Kluwick A, Alletto M (2008) “How turbulent” is the boundary layer separating from a bluff body for arbitrarily large Reynolds numbers?. Acta Mech 201(1–4):131–151. Special Issue dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday

    Google Scholar 

  33. Scheichl B, Kluwick A (2008) Level of turbulence intensities associated with bluff-body separation for large values of the Reynolds number. AIAA Meeting Paper 2008-4348

  34. Scheichl B, Kluwick A (2009) Evolution of a boundary layer from laminar stagnation-point flow towards turbulent separation. In: Peinke J, Oberlack M, Talamelli A (eds) Progress in turbulence III. Proceedings of iTi conference in turbulence 2008. Springer proceedings in physics. Springer, Berlin, pp 187–190

    Google Scholar 

  35. Kluwick A, Scheichl B (2009) High-Reynolds-number asymptotics of turbulent boundary layers: from fully attached to marginally separated flows. From Lecture notes in computational science and engineering, BAIL 2008—Boundary and Interior Layers. In: Hegarty AF, Kopteva N, O’Riordan E, Stynes M (eds) Proceedings of the international conference on boundary and internal layers—computational and asymptotic methods, Limerick, July 2008, vol 69. Springer, Berlin, pp 3–22 (invited 2009)

    Google Scholar 

  36. Monin AS, Yaglom AM (1971) In: Lumley JL (ed) Statistical fluid mechanics: mechanics of turbulence, vol 1. MIT Press, Cambridge

  37. Nagib HM, Chauhan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Trans R Soc A 365(1852): 755–770

    Article  MATH  ADS  Google Scholar 

  38. Schlichting H, Gersten K (2003) Boundary-layer theory. Springer, Berlin

    Google Scholar 

  39. Neiland V Ya (1971) Flow behind the boundary-layer separation point in a supersonic stream. Fluid Dyn 6(3):378–384. Original Russian article in Izv Akad Nauk SSSR. Mekh Zhidk i Gaza 3:19–27

  40. Stewartson K, Williams PG (1973) On self-induced separation II. Mathematika 20(6): 90–108

    Google Scholar 

  41. Diesperov VN (1984) On the existence and uniqueness of self-similar solutions describing the flow in mixing layers. Dokl Akad Nauk SSSR 275(6): 1341–1346

    MathSciNet  ADS  Google Scholar 

  42. Sychev VV (1972) Laminar separation. Fluid Dyn 7(3):407–417. Original Russian article Izv Akad Nauk SSSR. Mekh Zhidk i Gaza 3:47–59

    Google Scholar 

  43. Rothmayer AP, Smith FT (1998) Part III. High Reynolds number asymptotic theories. In: Johnson RW (ed) The handbook of fluid dynamics. CRC/Springer, Boca Raton/Heidelberg, pp III.1–25.26

  44. Brown SN, Stewartson K (1970) Trailing-edge stall. J Fluid Mech 42(3): 561–584

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Melnik RE, Chow R (1975) asymptotic theory of two-dimensional trailing-edge flow. Tech Rep NAS1-12426, NASA

  46. Smith FT (1977) The laminar separation of an incompressible fluid streaming past a smooth surface. Proc R Soc Lond A 356(1687): 443–463

    Article  MATH  ADS  Google Scholar 

  47. Korolev GL (1980) Numerical solution of the asymptotic problem of laminar boundary-layer separation from a smooth surface. Uch zap TsAGI 11(2): 27–36

    MathSciNet  Google Scholar 

  48. van Dommelen LL, Shen SF (1984) Interactive separation from a fixed wall. Numerical and physical aspects of aerodynamic flows II. Cebeci T (ed) Proceedings of the 2nd symposium, California State University, Long Beach, CA, January 17–20, 1983. Springer, New York, pp 393–402

  49. Smith FT (1979) Laminar flow of an incompressible fluid past a bluff body: the separation, reattachment, eddy properties and drag. J Fluid Mech 92: 171–205

    Article  MATH  ADS  Google Scholar 

  50. Sadovskii VS (1971) Properties of potential and vortex flows touching at a closed streamline. Uch Zap TsAGI 2: 113–119

    Google Scholar 

  51. Smith FT (1985) A structure for laminar flow past a bluff body at high Reynolds number. J Fluid Mech 155: 175–191

    Article  MATH  ADS  Google Scholar 

  52. Smith FT (1986) Concerning inviscid solutions for large scale separated flows. J Eng Math 20: 271–292

    Article  MATH  ADS  Google Scholar 

  53. Chernyshenko SI (1988) The asymptotic form of the stationary separated circumfluence of a body at high Reynolds numbers. PMM J Appl Math Mech 52: 746–753

    Article  MATH  MathSciNet  Google Scholar 

  54. Paton J (2010) Private communications

  55. Lighthill MJ (1953) On boundary layers and upstream influence. Part I. A comparison between subsonic and supersonic flows. Proc R Soc A 217: 344–357

    Article  ADS  Google Scholar 

  56. Lighthill MJ (1953) On boundary layers and upstream influence. Part II. Supersonic flows without separation. Proc R Soc A 217: 478–509

    Article  ADS  Google Scholar 

  57. Lighthill MJ (1963) In: Rosenhead L (ed) Chapter 2 in Laminar boundary layers. OUP, Oxford

  58. Neiland V Ya (1969) Towards a theory of separation of the laminar boundary layer in a supersonic stream. Mekh Zhid Gaza 4: 53–57

    Google Scholar 

  59. Messiter AF (1970) Boundary layer flow near the trailing edge of a flat plate. SIAM J Appl Math 18: 241–257

    Article  MATH  Google Scholar 

  60. Stewartson K, Williams PG (1969) Self-induced separation. Proc R Soc A312: 181–206

    ADS  Google Scholar 

  61. Smith CR, Walker JDA (1998) Mechanisms of turbulent boundary layers: vortex development and interactions. Paper No. AIAA-98-2959, AIAA fluid dynamics conference, June 1998

  62. Scheichl B, Kluwick A (2007) On turbulent marginal boundary layer separation: how the half-power law supersedes the logarithmic law of the wall. Int J Comput Sci Math (IJCSM) 1(2/3/4): 343–359

    Article  MATH  MathSciNet  Google Scholar 

  63. Kluwick A, Scheichl B (2009) High-Reynolds-number asymptotics of turbulent boundary layers: from fully attached to marginally separated flows. In: Hegarty AF, Kopteva N, O’Riordan E, Stynes M (eds) BAIL 2008: International conference on boundary and internal layers - computational and asymptotic methods, Limerick, July 2008. Lecture notes in computational science and engineering, vol 69. Springer, p 3

    Google Scholar 

  64. Scheichl B (2010) Modern aspects of high-Reynolds-number asymptotics of turbulent boundary layers—from fully attached to marginally separated flows. In: Steinrück H (eds) Asymptotic methods in fluid mechanics: survey and recent advances. CISM courses and lectures, vol 523. Springer, Berlin, pp 221–246

    Google Scholar 

  65. Mellor GL (1972) The large Reynolds number, asymptotic theory of turbulent boundary layers. Int J Eng Sci 10(10): 851–873

    Article  MathSciNet  Google Scholar 

  66. Barenblatt I, Chorin AJ, Prototoskin VM (2000) Self-similar intermediate structures in turbulent boundary layers at large Reynolds numbers. J Fluid Mech 410: 263–283

    Article  MATH  MathSciNet  ADS  Google Scholar 

  67. Monkewitz PA, Chauhan KA, Nagib HM (2007) Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys Fluids 19(11): 115101-1–115101-12

    Article  ADS  Google Scholar 

  68. Nagib HM, Chauhan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Trans R Soc A 365(1852): 755–770

    Article  MATH  ADS  Google Scholar 

  69. Melnik RE (1989) An asymptotic theory of turbulent separation. Comput Fluids 17(1): 165–184

    Article  MathSciNet  ADS  Google Scholar 

  70. Schneider W (1991) Boundary-layer theory for free turbulent shear flows. Z Flugwiss Weltraumforsch (J Flight Sci Space Res) 15(3): 143–158

    ADS  Google Scholar 

  71. Scheichl B, Kluwick A (2007) Turbulent marginal separation and the turbulent Goldstein problem. AIAA J 45(1): 20–36

    Article  ADS  Google Scholar 

  72. Clauser FH (1954) The turbulent boundary layer. In: Dryden HL, von Kármán Th (eds) Advances in applied mechanics, vol 4. Academic, New York, p 1

    Google Scholar 

  73. Stratford BS (1959) An experimental flow with zero skin friction throughout its region of pressure rise. J Fluid Mech 5(1): 17–35

    Article  MATH  MathSciNet  ADS  Google Scholar 

  74. Ruban AI (1981) Singular solutions of the boundary layer equations which can be extended continuously through the point of zero surface friction. Fluid Dyn 16(6): 835–843

    Article  MATH  MathSciNet  ADS  Google Scholar 

  75. Ruban AI (1982) Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Fluid Dyn 17(1): 33–41

    Article  MATH  MathSciNet  ADS  Google Scholar 

  76. Stewartson K, Smith FT, Kaups K (1982) Marginal separation. Stud Appl Math 67(1): 45–61

    MATH  MathSciNet  Google Scholar 

  77. Monkwitz PA, Chauhan KA, Nagib HM (2008) Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers. Phys Fluids 20(10): 105102-1–105102-16

    ADS  Google Scholar 

  78. Smith FT, Doorly DJ, Rothmayer AP (1990) On displacement-thickness, wall-layer and mid-flow scales in turbulent boundary layers, and slugs of vorticity in channel and pipe flows. Proc R Soc A 428(1875): 255–281

    Article  MATH  ADS  Google Scholar 

  79. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Applied mathematics and mechanics, vol 15. Academic, New York

    Google Scholar 

  80. Baldwin BS, Lomax H (1974) Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper No. 78-257

  81. Klebanoff PS (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA-TR-1247

  82. Michel R, Quemard C, Durant R (1969) Hypothesis on the mixing length and application to the calculation of the turbulent boundary layers. In: Kline SJ, Morkovin MV, Sovran G, Cockrell DJ (eds) Proceedings of computation of turbulent bounary layers—1968. AFOSR-IFP-Stanford conference, vol 1: methods, predictions, evaluation and flow structure. Stanford University, Stanford, p 195

    Google Scholar 

  83. Wilcox DC (2006) Turbulence modeling for CFD 3rd edn. DCW Industries Inc, La Canada, CA

    Google Scholar 

  84. Elliott JW, Smith FT (1987) Dynamic stall due to unsteady marginal separation. J Fluid Mech 179: 489–512

    Article  MATH  ADS  Google Scholar 

  85. Scheichl B, Kluwick A (1982) Asymptotic theory of bluff-body separation: a novel shear-layer scaling deduced from an investigation of the unsteady motion. J Fluids Struct 24(8): 1326–1338

    Article  Google Scholar 

  86. Lighthill MJ (1970) Turbulence. In: McDowell DM, Jackson JD (eds) Chapter 2 in Osborne Reynolds and Engineering Science Today. Manchester University Press, Manchester

    Google Scholar 

  87. Lighthill MJ (1962) Sound generated aerodynamically. Proc R Soc A 267: 147–181

    Article  MATH  ADS  Google Scholar 

  88. Lighthill MJ (1963) Jet noise. AIAA J 1: 1507–1517

    Article  MATH  Google Scholar 

  89. Lighthill MJ (1969) The outlook for a wave theory of turbulent shear flows. In: Proceedings of conference on Compressible turbulent boundary layers, vol 1. Standford University, Stanford, pp 511–520

  90. Lighthill MJ (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc R Soc A 222: 1–32

    Article  MATH  MathSciNet  ADS  Google Scholar 

  91. Lighthill MJ (1953) On the energy scattered from the interaction of turbulence with sound or shock waves. Proc Camb Philos Soc 49: 531–551

    Article  MATH  MathSciNet  Google Scholar 

  92. Lighthill MJ (1955) The effect of compressibility on turbulence. In: van Hulst HG, BurgessJMwith Whitham GB (eds) Chapter 2 in Gas dynamics of cosmic clouds. North Holland, Amsterdam, pp 1–1

    Google Scholar 

  93. Lighthill MJ (1994) The inaugural Theodorsen lecture: some aspects of the aeroacoustics of high speed jets. Theor Comput Fluid Dyn 6: 261–280

    Article  Google Scholar 

  94. Lighthill MJ (1995) Fluid mechanics. Chapter 10 in Twentieth century physics. IOP Publishing, Bristol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, F.T., Scheichl, B. & Kluwick, A. On turbulent separation. J Eng Math 68, 373–400 (2010). https://doi.org/10.1007/s10665-010-9413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-010-9413-9

Keywords

Navigation