Skip to main content
Log in

Large-degree asymptotics and exponential asymptotics for Fourier, Chebyshev and Hermite coefficients and Fourier transforms

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

When a function is expanded as \(f(x) \approx \sum \limits _{n=0}^{N-1}\, a_{n}\phi_{n}(x)\)for some set of basis functions \({\phi_{j}(x)}\) , its spectral coefficients a n generally have an asymptotic approximation, as n→∞, in the form of an inverse power series plus terms that decrease exponentially with n. If f(x) is analytic on the expansion interval, then all the coefficients of the inverse power series are zero and the problem becomes one of “beyond-all-orders” or “exponential” asymptotics. The method of steepest descent for integrals and other complex-path integration techniques can successfully connect the exponentially small behavior of the spectral coefficients to the singularities of f(x) off the expansion interval. Many examples are given in both one and two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd JP (2001) Chebyshev and Fourier spectral methods, 2nd edn. Dover, Mineola

    MATH  Google Scholar 

  2. Lyness JN (1971) Adjusted forms of the Fourier Coefficient Asymptotic Expansion. Math Comput 25: 87–104

    Article  MATH  MathSciNet  Google Scholar 

  3. Lyness JN (1984) The calculation of trigonometric Fourier coefficients. J Comput Phys 54: 57–73

    Article  MATH  ADS  Google Scholar 

  4. Davis PJ (1959) On the numerical integration of periodic analytic functions. In: Langer RE (eds) Numerical approximation. University of Wisconsin Press, Madison, pp 45–59

    Google Scholar 

  5. Boyd JP (1998) Weakly nonlocal solitary waves and beyond-all-orders asymptotics: generalized solitons and hyperasymptotic perturbation theory, volume 442 of Mathematics and its applications. Kluwer, Amsterdam

    Google Scholar 

  6. Boyd JP (1999) The devil’s invention: asymptotics, superasymptotics and hyperasymptotics. Acta Applicandae 56: 1–98

    Article  MATH  Google Scholar 

  7. Segur H, Tanveer S Levine H (eds) (1991) Asymptotics beyond all orders. Plenum, New York, p 389

    MATH  Google Scholar 

  8. Dingle RB (1973) Asymptotic expansions: their derivation and interpretation. Academic, New York

    MATH  Google Scholar 

  9. Arteca GA, Fernandez FM, Castro EA (1990) Large order perturbation theory and summation methods in quantum mechanics. Springer, New York

    Google Scholar 

  10. Jones DS (1997) Introduction to asymptotics: a treatment using nonstandard analysis. World Scientific, Singapore

    MATH  Google Scholar 

  11. Kowalenko V, Glasser ML, Taucher T, Frankel NE (1995) Generalised Euler-Jacobi inversion formula and asymptotics beyond all orders, volume 214 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge

    Google Scholar 

  12. Le Guillou JC, Zinn-Justin J (eds) (1990) Large-order behaviour of perturbation theory. North-Holland, Amsterdam

    Google Scholar 

  13. Lombardi E (2000) Oscillatory integrals and phenomenon beyond all algebraic orders, volume 1741 of Lecture Notes in Mathematics. Springer, New York

    Google Scholar 

  14. Paris RB, Kaminski D (2001) Asymptotics and Mellin-Barnes integrals. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Sternin BY, Shatalov VE (1996) Borel-Laplace transform and asymptotic theory: introduction to resurgent analysis. CRC Press, New York

    MATH  Google Scholar 

  16. Wong R (ed) (1990) Asymptotic and computational analysis. Marcel Dekker, New York

    MATH  Google Scholar 

  17. Balser W (1999) Formal power series and linear systems of meromorphic ordinary differential equations. Springer, New York

    Google Scholar 

  18. Grosch CE, Orszag SA (1977) Numerical solution of problems in unbounded regions: coordinate transforms. J Comput Phys 25: 273–296

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Boyd JP (1982) The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J Comput Phys 45: 43–79

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Boyd JP (1987) Spectral methods using rational basis functions on an infinite interval. J Comput Phys 69: 112–142

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Boyd JP (1990) The orthogonal rational functions of Higgins and Christov and Chebyshev polynomials. J Approx Theor 61: 98–103

    Article  MATH  Google Scholar 

  22. Christov CI (1982) A complete orthonormal system in L 2( − ∞, ∞) space. SIAM Appl Math 42: 1337–1344

    Article  MATH  MathSciNet  Google Scholar 

  23. Christov CI, Bekyarov KL (1990) A Fourier-series method for solving soliton problems. SIAM J Sci Stat Comput 11: 631–647

    Article  MATH  MathSciNet  Google Scholar 

  24. Bekyarov KL, Christov CI (1991) Fourier-Galerkin numerical technique for solitary waves of fifth order Korteweg-DeVries equation. Chaos Solitons Fract 5: 423–430

    Article  ADS  MathSciNet  Google Scholar 

  25. Christou MA, Christov CI (2002) Fourier-Galerkin method for interacting localized waves. Neural Parallel Sci Comput 10: 431–446

    MATH  MathSciNet  Google Scholar 

  26. Christou MA, Christov CI (2002) Fourier-Galerkin method for localized solutions of equations with cubic nonlinearity. J Comput Anal Appl 4: 63–77

    MATH  MathSciNet  Google Scholar 

  27. Christou MA, Christov CI (2005) Localized waves for the regularized long wave equation via a Galerkin spectral method. Math Comput Simul 69: 257–258

    Article  MATH  MathSciNet  Google Scholar 

  28. Christou MA, Christov CI (2005) Fourier-Galerkin method for 2D solitons of Boussinesq equation. Math Comput Simul 74: 82–92

    Article  MathSciNet  Google Scholar 

  29. Boyd JP (1987) Orthogonal rational functions on a semi-infinite interval. J Comput Phys 70: 63–88

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Boyd JP, Rangan C, Buchsbaum PH (2003) Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansion. J Comput Phys 188: 56–74

    Article  MATH  ADS  Google Scholar 

  31. Boyd JP (1984) The asymptotic coefficients of Hermite series. J Comput Phys 54: 382–410

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Darboux MG (1878) Mémoire sur l’approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. Math Pures Appl 4: 5–56

    Google Scholar 

  33. Darboux MG (1878) Mémoire sur l’approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. Math Pures Appl 4: 377–416

    Google Scholar 

  34. Hunter C, Guerrieri B (1980) Deducing the properties of singularities of functions from their Taylor series coefficients. SIAM J Appl Math 39: 248–263

    Article  MATH  MathSciNet  Google Scholar 

  35. Hunter C (1987) Oscillations in the coefficients of power series. SIAM J Appl Math 4: 483–497

    Article  MathSciNet  Google Scholar 

  36. Delves LM, Mead KO (1971) On the convergence rates of variational methods I Asymptotically diagonal systems. Math Comput 25: 699–716

    Article  MATH  MathSciNet  Google Scholar 

  37. Mead KO, Delves LM (1973) On the convergence rate of generalized Fourier expansions. J Inst Math Appl 12: 247–259

    Article  MATH  MathSciNet  Google Scholar 

  38. Schwartz C (1963) Estimating convergence rates of variational calculations. Meth Comput Phys 2: 241–266

    Google Scholar 

  39. Sulem C, Sulem PL, Frisch H (1983) Tracing complex singularities with spectral methods. J Comput Phys 50: 138–161

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Mhaskar HN, Prestin J (2000) On detection of singularities of a periodic function. Adv Comput Math 12: 95–131

    Article  MATH  MathSciNet  Google Scholar 

  41. Weideman JAC (2003) Computing the dynamics of complex singularities in nonlinear PDEs. SIAM J Appl Dyn Syst 2: 171–186

    Article  MATH  MathSciNet  Google Scholar 

  42. Pauls W, Matsumoto T, Frisch U, Bec J (2006) Nature of complex singularities for the 2d Euler equation. Phys D 219: 40–59

    Article  MATH  MathSciNet  Google Scholar 

  43. Della Rocca G, Lombardo MC, Sammartino M, Sciacca V (2006) Singularity tracking for Camassa-Holm and Prandtl’s equations. Appl Numer Math 56: 1108–1122

    Article  MATH  MathSciNet  Google Scholar 

  44. Cichowlas C, Brachet ME (2005) Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows. Fluid Dyn Res 36: 239–248

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Scraton RE (1970) A method for improving the convergence of Chebyshev series. Comput J 13: 202–203

    Article  MathSciNet  Google Scholar 

  46. Tee T, Trefethen LN (2006) A rational spectral collocation method with adaptively transformed Chebyshev grid points. SIAM J Sci Comput 28: 1798–1811

    Article  MATH  MathSciNet  Google Scholar 

  47. Boyd JP (1986) Polynomial series versus sinc expansions for functions with corner or endpoint singularities. J Comput Phys 64: 266–269

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Boyd JP (1985) Complex coordinate methods for hydrodynamic instabilities and Sturm-Liouville problems with an interior singularity. J Comput Phys 57: 454–471

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Boyd JP (2004) Prolate elements: prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral and pseudospectral algorithms. J Comput Phys 199: 688–716

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. Barray DA, Parlange JY, Li L, Prommer H, Cunningham CJ, Stagnitti E (2000) Analytical approximations for real values of the Lambert W-function. Math Comput Simul 53: 95–103

    Article  Google Scholar 

  51. Davis PJ (1975) Interpolation and approximation. Dover, New York

    MATH  Google Scholar 

  52. Bain M (1978) On the uniform convergence of generalized Fourier series. J Inst Math Appl 21: 379–386

    Article  MATH  MathSciNet  Google Scholar 

  53. Bain M, Delves LM (1977) Convergence rates of expansions in Jacobi polynomials. Numer Math 27: 219–225

    Article  MATH  MathSciNet  Google Scholar 

  54. Luke YL (1969) The special functions and their approximations, vol I & II. Academic Press, New York

    MATH  Google Scholar 

  55. Luke YL Mathematical functions and their approximations. Academic Press, New York

  56. Németh GN (1992) Mathematical approximation of special functions: ten papers on Chebyshev expansions. Nova Science Publishers, New York

    MATH  Google Scholar 

  57. Snyder MA (1966) Chebyshev methods in numerical approximation. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  58. Elliott D (1960) The expansion of functions in ultraspherical polynomials. J Aust Math Soc 1: 428–438

    MATH  Google Scholar 

  59. Elliott D (1964) The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math Comput 18: 274–284

    Article  Google Scholar 

  60. Elliott D (1965) Truncation errors in two Chebyshev series approximations. Math Comput 19: 234–248

    Article  MATH  Google Scholar 

  61. Elliott D, Szekeres G (1965) Some estimates of the coefficients in the Chebyshev expansion of a function. Math Comput 19: 25–32

    Article  MATH  MathSciNet  Google Scholar 

  62. Elliott D, Tuan PD (1974) Asymptotic coefficients of Fourier coefficients. SIAM J Math Anal 5: 1–10

    Article  MATH  MathSciNet  Google Scholar 

  63. Tuan PD, Elliott D (1972) Coefficients in series expansions for certain classes of functions. Math Comput 26: 213–232

    Article  MATH  MathSciNet  Google Scholar 

  64. Wimp J (1961) Polynomial approximations to integral transforms. Math Comput 15: 174–178

    Article  MATH  MathSciNet  Google Scholar 

  65. Wimp J (1962) Polynomial expansions of Bessel functions and some associated functions. Math Comput 16: 446–458

    Article  MATH  MathSciNet  Google Scholar 

  66. Miller PD (2006) Applied asymptotic analysis. American Mathematical Society Providence, Rhode Island

    MATH  Google Scholar 

  67. Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York, 594 pp

    MATH  Google Scholar 

  68. Boyd JP (2002) A comparison of numerical algorithms for Fourier extension of the first, second and third Kinds. J Comput Phys 178: 118–160

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. Boyd JP (2005) Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C . Appl Math Comput 161: 591–597

    Article  MATH  MathSciNet  Google Scholar 

  70. Boyd JP (2006) Asymptotic Fourier coefficients for a C bell (Smoothed-“Top-Hat” Function) and the Fourier extension problem. J Sci Comput 29: 1–24

    Article  MATH  MathSciNet  Google Scholar 

  71. Miller GF (1966) On the convergence of Chebyshev series for functions possessing a singularity in the range of representation. SIAM J Numer Anal 3: 390–409

    Article  MATH  MathSciNet  Google Scholar 

  72. Sibuya Y (1990) Gevrey property of formal solutions in a parameter. In: Wong R (eds) Asymptotic and computational analysis. Marcel Dekker, New York, pp 393–401

    Google Scholar 

  73. Boyd JP (1981) The rate of convergence of Chebyshev polynomials for functions which have asymptotic power series about one endpoint. Math Comput 37: 189–196

    Article  MATH  Google Scholar 

  74. Boyd JP (1982) A Chebyshev polynomial rate-of-convergence theorem for Stieltjes functions. Math Comput 39: 201–206

    Article  MATH  Google Scholar 

  75. Boyd JP (1994) Asymptotic Chebyshev coefficients for two functions with very rapidly or very slowly divergent power series about one endpoint. Appl Math Lett 9: 11–15

    Article  Google Scholar 

  76. Berry MV (1991) Stokes phenomenon for superfactorial asymptotic series. Proc R Soc Lond A 435: 437–444

    Article  MATH  ADS  MathSciNet  Google Scholar 

  77. Boyd JP (1994) The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the Weideman-Cloot sinh-mapping for pseudospectral computations on an infinite interval. J Comput Phys 110: 360–372

    Article  MATH  ADS  MathSciNet  Google Scholar 

  78. Weideman JAC (1994) Computation of the complex error function. SIAM J Numer Anal 31: 1497–1518 Errata: (1995) 32:330–331]

    Article  MATH  MathSciNet  Google Scholar 

  79. Watson GN (1910) The harmonic functions associated with the parabolic cylinder. Proc Lond Math Soc 8: 393–421

    Article  Google Scholar 

  80. Hille E (1940) Contributions to the theory of Hermitian series II. The representation problem. Trans Am Math Soc 47: 80–94

    Article  MATH  MathSciNet  Google Scholar 

  81. Hille E (1939) Contributions to the theory of Hermitian series. Duke Math J 5: 875–936

    Article  MathSciNet  Google Scholar 

  82. Xiao H, Rokhlin V, Yarvin N (2001) Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Prob 17: 805–838

    Article  MATH  MathSciNet  ADS  Google Scholar 

  83. Boyd JP (2003) Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Appl Comput Harmonic Anal 15: 168–176

    Article  MATH  Google Scholar 

  84. Boyd JP (2005) Computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions – prolate elements. ACM Trans Math Softw 31: 149–165

    Article  MATH  Google Scholar 

  85. Kovali N, Lin W, Carin L (2005) Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations. IEEE Trans Antennas Propag 53: 3990–4000

    Article  ADS  Google Scholar 

  86. Kovvali N, Lin W, Zhao Z, Couchman L, Carin L (2006) Rapid prolate pseudospectral differentiation and interpolation with the fast multipole method. SIAM J Sci Comput 28: 485–497

    Article  MATH  MathSciNet  Google Scholar 

  87. Lin W, Kovvali N, Carin L (2006) Pseudospectral method based on prolate spheroidal wave functions for semiconductor nanodevice simulation. Comput Phys Commun 175: 78–85

    Article  ADS  Google Scholar 

  88. Boyd JP (1999) The Blasius function in the complex plane. J Exp Math 8: 381–394

    MATH  Google Scholar 

  89. Chang YF, Greene JM, Tabor M,Weiss J (1983) The analytic structure of dynamical systems and self-similar natural boundaries. Physica D 8:183-

    Google Scholar 

  90. Chang YF, Tabor M, Weiss J (1983) Analytic structure of the Henon-Heiles Hamiltonian in integrable and nonintegrable regimes. J Math Phys 23: 531

    Article  MathSciNet  ADS  Google Scholar 

  91. Levine G, Fournier JD, Tabor M (1988) Singularity clustering in the duffing oscillator. J Phys A 21 (1988) 33–

    Google Scholar 

  92. Takaoka N (1989) Pole distribution and steady pulse solution of the fifth order Korteweg-deVries equation. J Phys Soc JPn 58:73–81, Addendum, vol 58, p 3028

    Google Scholar 

  93. Huang NN, Strichartz RS (2001) Sampling theory for functions with fractal spectrum. Exp Math 10: 619–638

    MATH  MathSciNet  Google Scholar 

  94. Igari S (1968) Lectures on Fourier series of several variables. Department of Mathematics, University of Wisconsin, Madison

  95. Baszenski G, Delvos F (1983) Accelerating the rate of convergence of bivariate Fourier expansions. In: Chou CK et al (eds) Approximation theory IV. Academic Press, New York, pp 335–340

    Google Scholar 

  96. Bochner S, Martin WT (1948) Several complex variables. Princeton University Press, Princeton

    MATH  Google Scholar 

  97. Gray A, Pinsky M (1992) Gibbs phenomenon for Fourier-Bessel series. Exp Math 1: 313–316

    MATH  MathSciNet  Google Scholar 

  98. Gray A, Pinsky M (1993) Gibbs phenomenon for Fourier-Bessel series. Expositiones Mathematicae 11: 123–135

    MATH  MathSciNet  Google Scholar 

  99. Brandolini L, Colzani L, Iosevich A, Travaglini G (2002) The rate of convergence of Fourier expansions in the plane: a geometric viewpoint. Mathematische Zeitschrift 242: 709–724

    Article  MATH  MathSciNet  Google Scholar 

  100. Brandolini L, Iosevich A, Travaglini G (2003) Planar convex bodies, Fourier Transform, lattice points and irregularities of distribution. Trans Am Math Soc 355: 3513–3535

    Article  MATH  MathSciNet  Google Scholar 

  101. Helmberg G (1999) A corner point Gibbs phenomenon for Fourier series in two dimensions. J Approx Theor 100: 1–43

    Article  MATH  MathSciNet  Google Scholar 

  102. Helmberg G (2002) Localization of a corner point Gibbs phenomenon for Fourier series in two dimensions. J Fourier Anal Appl 8: 29–41

    Article  MATH  MathSciNet  Google Scholar 

  103. Helmberg G (2003) An edge point Gibbs phenomenon for Fourier series in two dimensions. Monatshefte fur Mathematik 139: 221–225

    Article  MATH  MathSciNet  Google Scholar 

  104. Taylor M (2001) Eigenfunction expansions and the Pinsky phenomenon on compact manifolds. J Fourier Anal Appl 7507–522

  105. Ikromov IA (1995) Estimates for the Fourier transform of the indicator function for nonconvex domains. Funct Anal Appl 29: 161–167

    Article  MATH  MathSciNet  Google Scholar 

  106. Pinsky MA, Stanton NK, Trapa PE (1993) Fourier series of radial functions in several variables. J Funct Anal 116: 111–132

    Article  MATH  MathSciNet  Google Scholar 

  107. Bain M, Delves LM, Mead KO (1978) On the rate of convergence of multidimensional orthogonal expansions. Inst Math Appl 21: 379–386

    Article  MATH  MathSciNet  Google Scholar 

  108. Podkorytov AN (1991) On the asymptotics of the Fourier transform on a convex curve. Vestn Leningrad Univ Math 24: 57–65

    MATH  MathSciNet  Google Scholar 

  109. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  110. Kerr RM (2005) Vortex collapse and turbulence. Fluid Dyn Res 36: 249–260

    Article  MATH  ADS  MathSciNet  Google Scholar 

  111. Lindborg E (1999) Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence. J Fluid Mech 388: 259–288

    Article  MATH  ADS  Google Scholar 

  112. Moffatt HK (1984) Simple topological aspects of turbulent vorticity dynamics. In: Tatsumi T (eds) Turbulence and chaotic phenomena in fluids. Elsevier, Amsterdam, pp 223–230

    Google Scholar 

  113. Moffatt HK (1991) Spiral structures in turbulent flow. In: New approaches and concepts in turbulence, Monte Verita. Birkhauser, Basel, pp 121–129

  114. Gilbert AD (1988) Spiral structures and spectra in two-dimensional turbulence. J Fluid Mech 193: 475–497

    Article  MATH  ADS  MathSciNet  Google Scholar 

  115. Farge M, Holschneider M (1991) Interpretation of two-dimensional turbulence energy spectrum in terms of quasi-singularity in some vortex cores. Europhys Lett 15: 737–743

    Article  ADS  Google Scholar 

  116. Rauch JB, Massey FJ (1974) Differentiability of solutions to hyperbolic initial-boundary value problems. Trans Am Math Soc 189: 303–318

    Article  MATH  MathSciNet  Google Scholar 

  117. Sakamoto R (1978) Hyperbolic boundary value problems. Cambridge University Press, Cambridge (1982), 204 pp; first published in Japanese in 1978

  118. Ladyzenskaja O (1952) On the convergence of Fourier series defining a solution of a mixed problem for hyperbolic equations. Doklady Akad Nauk SSSR 85: 481–484

    MathSciNet  Google Scholar 

  119. Smale S (1980) Smooth solutions of the heat and diffusion equations. Comment Math Helvetici 55: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  120. Boyd JP, Flyer N (1999) Compatibility conditions for time-dependent partial differential equations and the the rate of convergence of Chebyshev and Fourier spectral methods. Comput Meth Appl Mech Eng 175: 281–309 Errata: in Eq(22), the square root should be in front of the integral, not in the exponential

    Article  MATH  MathSciNet  Google Scholar 

  121. Témam R (2006) Suitable initial conditions. J Comput Phys 218: 443–450

    Article  MATH  ADS  MathSciNet  Google Scholar 

  122. Flyer N, Swarztrauber PN (2002) The convergence of spectral and finite difference methods for initial-boundary value problems. SIAM J Sci Comput 23: 1731–1751

    Article  MATH  MathSciNet  Google Scholar 

  123. Flyer N, Fornberg B (2003) On the nature of initial-boundary value solutions for dispersive equations. J Comput Phys 64: 546–564

    MATH  MathSciNet  Google Scholar 

  124. Deville M, Kleiser L, Montigny-Rannou F (1984) Pressure and time treatment for Chebyshev spectral solution of a Stokes problem. Int J Numer Meth Fluids 4: 1149–1163

    Article  MATH  Google Scholar 

  125. Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18: 1–18

    Article  MATH  ADS  Google Scholar 

  126. Témam R (1982) Behaviour at time t = 0 of the solutions of semi-linear evolution equations. J Diff Eqns 43: 73–92

    Article  MATH  Google Scholar 

  127. Boyd JP (1985) An analytical and numerical study of the two-dimensional Bratu equation. J Sci Comput 1: 183–206

    Article  Google Scholar 

  128. Haidvogel DB, Zang TA (1979) The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. J Comput Phys 30: 167–180

    Article  MATH  ADS  MathSciNet  Google Scholar 

  129. Schultz WW, Lee NY, Boyd JP (1989) Chebyshev pseudospectral method of viscous flows with corner singularities. J Sci Comput 4: 1–24

    Article  MATH  Google Scholar 

  130. Boyd JP (2005) A spectrally-accurate quadrature for resolving the logarithmic endpoint singularities of the Chandrasekhar H-function. J Quant Spectrosc Radiat Transfer 94: 467–475

    Article  ADS  Google Scholar 

  131. Boyd JP (2005) A Chebyshev/Rational Chebyshev spectral method for the Helmholtz equation in a sector on the surface of a sphere: defeating corner singularities. J Comput Phys 206: 302–310

    Article  MATH  ADS  Google Scholar 

  132. Boyd JP (1989) The asymptotic Chebyshev coefficients for functions with logarithmic endpoint singularities. Appl Math Comput 29: 49–67

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, J.P. Large-degree asymptotics and exponential asymptotics for Fourier, Chebyshev and Hermite coefficients and Fourier transforms. J Eng Math 63, 355–399 (2009). https://doi.org/10.1007/s10665-008-9241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-008-9241-3

Keywords

Navigation