Skip to main content
Log in

Discretization methods with embedded analytical solutions for convection–diffusion dispersion–reaction equations and applications

  • Original Paper
  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Numerical methods are described and results are presented for a system of convection–diffusion dispersion–reaction equations. Discretization methods that were developed earlier by the author are used. The methods allow large time steps for simulating the transport–reaction model of a waste disposal. With higher-order discretization methods, based on finite-volume methods, one may use large time steps without loss of accuracy. A multi-physical multi-dimensional equation is broken down into simpler physical and one-dimensional equations. These simpler equations are handled with locally higher-order discretization methods and the results are coupled by operator-splitting methods. An improved explicit time-discretization method, with embedded analytical solutions, for the convection–reaction equation and an implicit time-discretization diffusion–dispersion equation is described. For the numerical experiments the underlying program-tool R 3 T is briefly introduced and the main concepts are presented. Benchmark problems for testing the discretization methods of higher order are described. Real-life problems for simulating radioactive-waste disposals with underlying flowing groundwater are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bear J (1972) Dynamics of fluids in porous media. Dover Publications, New York

    Google Scholar 

  2. Bear J, Bachmat Y (1991) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers Boston, Dordrecht

    MATH  Google Scholar 

  3. Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection–diffusion–reaction equations, Springer Series in Computational Mathematics, vol 33. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  4. Pao CV (1992) Non linear parabolic and elliptic equation. Plenum Press, New York

    Google Scholar 

  5. Evans LC (1998) Partial differential equations. American Mathematical Society, Providence, Rhode Island

    MATH  Google Scholar 

  6. Kröner D (1997) Numerical schemes for conservation laws. John Wiley & Sons, Chichester

    MATH  Google Scholar 

  7. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge

    MATH  Google Scholar 

  8. Bey J (1998) Finite-volumen- und mehrgitter-verfahren für elliptische Randwertprobleme, Advances in numerical mathematics. B.G., Teubner Stuttgart, Leipzig

  9. Frolkovič P (2002) Flux-based method of characteristics for contaminant transport in flowing groundwater. Comput Visuali Sci 5:73–83

    Article  MATH  Google Scholar 

  10. Cockburn B (2003) Discontinuous Galerkin methods for convection-dominated problems. In: Barth TJ, Deconinck H (eds) Higher-order methods for computational physics. Lecture Notes in Computational Science and Engineering, vol 9. Springer Verlag, Berlin, Heidelberg, pp 69–225

    Google Scholar 

  11. Fein E, Kühle T, Noseck U (2001) Design of a 3d program-code for simulating the contaminat-transport. Fachliches Feinkonzept, GRS-Braunschweig, pp. 1–30

    Google Scholar 

  12. Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection–diffusion–reaction equations. Springer series in computational mathematics, vol 33. Berlin, Springer Verlag

    Google Scholar 

  13. Hundsdorfer WH (1996) Numerical solution od advection–diffusion–reaction equations. Technical Report NM-N9603, CWI

  14. Butcher JC (2003) Ordinary differential equations. John Wiley & Sons, Chichester

    MATH  Google Scholar 

  15. Strang G (1968) On the construction and comparision of difference schemes. SIAM J Numer Anal 5:506–517

    Article  MATH  MathSciNet  Google Scholar 

  16. Verwer JG, Sportisse B (1998) A note on operator splitting in a stiff linear case. MAS-R9830, ISSN 1386-3703

  17. Hackbusch W (1985) Multi-grid methods and applications. Springer-Verlag, Berlin, Heidelberg

    MATH  Google Scholar 

  18. Wittum G (1995) Multi-grid methods: a introduction. Bericht 1995-5 Institut für Computeranwendungen der Universität Stuttgart

  19. Langtangen HP (2003) Computational partial differential equations. Text in computational science and engineering, vol 2. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  20. Yoshida H (1990) Construction of higher order symplectic integrators. Phys Lett A 150:262–268

    Article  ADS  MathSciNet  Google Scholar 

  21. Geiser J (2004) Discretisation Methods for Systems of Convective-Diffusive-Dispersive-Reactive Equations and Applications. Doctor-Thesis, University of Heidelberg, Heidelberg

    Google Scholar 

  22. Fein E (2000) Test-example for a waste-disposal and parameters for a decay-chain. Private communications Braunschweig

  23. Frolkovič P, Geiser J (2000) Numerical simulation of radionuclides transport in double porosity media with sorption. In: Handlovicova A, Komornikova M, Mikula K, Sevcovic D (eds) Algorithmy 2000, 15th conference of scientific computing-podbanske. Slovakia Vydavatel’sto STU, Bratislava

    Google Scholar 

  24. Zlatev Z (1995) Computer treatment of large air pollution models. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  25. Frolkovič P, Geiser J (2003) Discretization methods with discrete minimum and maximum property for convection dominated transport in porous media. In: Dimov I, Lirkov I, Margenov S, Zlatev Z (eds), Numerical methods and applications, 5th international conference, NMA 2002, Borovets, Bulgaria. Lecture notes in computer science, vol 2542. Berlin, Springer-Verlag, Heidelberg, pp 445–453

  26. Frolkovič P, De Schepper H (2001) Numerical modelling of convection dominated transport coupled with density driven flow in porous media. Adv Water Resour 24:63–72

    Article  Google Scholar 

  27. Higashi K, Pigford Th H (1980) Analytical models for migration of radionuclides in geologic sorbing media. J Nucl Sci Technol 17:700–709

    Article  Google Scholar 

  28. Jury WA, Roth K (1990) Transfer functions and solute movement through soil. Bikhäuser Verlag, Basel, Boston, Berlin

    Google Scholar 

  29. Bateman H (1910) The solution of a system of differential equations occurring in the theory of radioactive transformations. Proc Cambridge Phil Soc 15:423–427

    Google Scholar 

  30. Sun Y, Petersen JN, Clement TP (1999) Analytical solutions for multiple species reactive transport in multiple dimensions. J Contaminant Hydrol 35:429–440

    Article  Google Scholar 

  31. Scheidegger AE (1961) General theory of dispersion in porous media. J Geophys Res 66:32–73

    Google Scholar 

  32. Genuchten MTh (1985) Convective-dispersive transport of solutes involved in sequential first-order decay reactions. Comput Geosci 11:129–147

    Article  ADS  Google Scholar 

  33. Eykolt GR (1999) Analytical solution for networks of irreversible first-order reactions. J Water Res 33:814–826

    Article  Google Scholar 

  34. Davis B (1978) Integral transforms and their applications. Applied Mathematical Sciences vol 25. Springer Verlag, New York, Heidelberg

    Google Scholar 

  35. Yserentant H (1993) Old and new convergence proofs for multi-grid methods. Acta Numer 3:285–326

    Article  MathSciNet  Google Scholar 

  36. GRAPE (2001) GRAphics Programming Environment for mathematical problems, Version 5.4. Institut für Angewandte Mathematik, Universität Bonn und Institut für Angewandte Mathematik, Universität Freiburg, Freiburg, Bonn

  37. Bastian P, Birken K, Eckstein K, Johannsen K, Lang S, Neuss N, Rentz-Reichert H (1997) UG - a flexible software toolbox for solving partial differential equations. Comput Visual Sci 1:27–40

    Article  MATH  Google Scholar 

  38. Geiser J (2001) Numerical simulation of a model for transport and reaction of radionuclides. In: Margenov S, Wasniewski J, Yalamov PY (eds) Scientific computing, third international conference, LSSC 2001, Sozopol, Bulgaria. Lecture notes in computer science vol 2179. Springer-Verlag, Berlin, Heidelberg, pp 487–496

    Google Scholar 

  39. Geiser J (2004) R 3 T: Radioactive-retardation–reaction-transport-program for the simulation of radioactive waste disposals. Proceedings: computing, communications and control technologies: CCCT 2004. The University of Texas at Austin, pp 1–8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Geiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiser, J. Discretization methods with embedded analytical solutions for convection–diffusion dispersion–reaction equations and applications. J Eng Math 57, 79–98 (2007). https://doi.org/10.1007/s10665-006-9057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9057-y

Keywords

Navigation