Skip to main content
Log in

Biogenic synthesis of iron oxide nanoparticles using leaf extract of Spilanthes acmella: antioxidation potential and adsorptive removal of heavy metal ions

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The sequestration of contaminants from wastewater, such as heavy metals, has become a major global issue. Multiple technologies have been developed to address this issue. Nanotechnology is attracting significant interest as a new technology, and numerous nanomaterials have been produced for sequestrating heavy metals from polluted water due to their superior properties arising from the nanoscale effect. This study reports biosynthesis of iron oxide nanoparticles (IO-NPs) and their applications for adsorptive sequestration of various metal ions from aqueous solutions. Biosynthesis of IO-NPs has been carried out by using leaf extract of Spilanthes acmella, a medicinal plant. FTIR analysis of the leaf extract and biosynthesized IO-NPs marked the role of various functional groups in biosynthesis of IO-NPs. FESEM analysis revealed the average size range of IO-NPs as 50 to 80 nm, while polydisperse nature was confirmed by DLS analysis. EDX analysis revealed the presence of Fe, O, and C atoms in the elemental composition of the NPs. The antioxidant potential of the biosynthesized IO-NPs (IC50 = 136.84 µg/mL) was confirmed by DPPH assay. IO-NPs were also used for the adsorptive removal of As3+, Co2+, Cd2+, and Cu2+ ions from aqueous solutions with process optimization at an optimized pH (7.0) using dosage of IO-NPs as 0.6 g/L (As3+ and Co2+) and 0.8 g/L (Cd2+ and Cu2+). Adsorption isotherm analysis revealed the maximum adsorption efficiency for As3+ (21.83 mg/g) followed by Co2+ (20.43 mg/g), Cu2+ (15.29 mg/g), and Cd2+ (13.54 mg/g) using Langmuir isotherm model. The biosynthesized IO-NPs were equally efficient in the simultaneous sequestration of these heavy metal ions signifying their potential as effective nanoadsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah, J. A. A., Salah Eddine, L., Abderrhmane, B., Alonso-González, M., Guerrero, A., & Romero, A. (2020). Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustainable Chemistry and Pharmacy, 17(April). https://doi.org/10.1016/j.scp.2020.100280

  • Aksu Demirezen, D., Yıldız, Y. Ş, Yılmaz, Ş, & Demirezen Yılmaz, D. (2019). Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. Journal of Bioscience and Bioengineering, 127(2), 241–245. https://doi.org/10.1016/j.jbiosc.2018.07.024

    Article  CAS  Google Scholar 

  • Al-Karagoly, H., Rhyaf, A., Naji, H., Albukhaty, S., Almalki, F. A., Alyamani, A. A., et al. (2022). Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Processing and Synthesis, 11(1), 254–265. https://doi.org/10.1515/gps-2022-0026

    Article  CAS  Google Scholar 

  • Balamurugan, M., Saravanan, S., & Soga, T. (2014). Synthesis of iron oxide nanoparticles by using eucalyptus globulus plant extract. e-Journal of Surface Science and Nanotechnology, 12(August), 363–367. https://doi.org/10.1380/ejssnt.2014.363

  • Bansal, M., Garg, R., Garg, V. K., Garg, R., & Singh, D. (2022). Sequestration of heavy metal ions from multi-metal simulated wastewater systems using processed agricultural biomass. Chemosphere, 296(December 2021), 133966. https://doi.org/10.1016/j.chemosphere.2022.133966

  • Bhardwaj, S., Lata, S., & Garg, R. (2022). Phyto-mediated green synthesis of silver nanoparticles using Acmella oleracea leaf extract: Antioxidant and catalytic activity. Pharmacognosy Magazine, 18(77), 22. https://doi.org/10.4103/pm.pm_586_20

    Article  CAS  Google Scholar 

  • Bishnoi, S., Kumar, A., & Selvaraj, R. (2018). Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Materials Research Bulletin, 97(March 2017), 121–127. https://doi.org/10.1016/j.materresbull.2017.08.040

  • Biswas, A., Vanlalveni, C., Lalfakzuala, R., Nath, S., & Rokhum, L. (2020). Mikania mikrantha leaf extract mediated biogenic synthesis of magnetic iron oxide nanoparticles: Characterization and its antimicrobial activity study. Materials Today: Proceedings, 42, 1366–1373. https://doi.org/10.1016/j.matpr.2021.01.108

    Article  CAS  Google Scholar 

  • Demirezen, D. A., Yılmaz, Ş., Yılmaz, D. D., & Yıldız, Y. Ş. (2022). Green synthesis of iron oxide nanoparticles using Ceratonia siliqua L. aqueous extract: Improvement of colloidal stability by optimizing synthesis parameters, and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria. International Journal of Materials Research, 113(10), 849–861. https://doi.org/10.1515/ijmr-2022-0037

  • Eddy, N. O., Garg, R., Garg, R., Aikoye, A. O., & Ita, B. I. (2022a). Waste to resource recovery: Mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02571-5

    Article  Google Scholar 

  • Eddy, N. O., Ukpe, R. A., Ameh, P., Ogbodo, R., Garg, R., & Garg, R. (2022b). Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONP-O). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-22747-w

    Article  Google Scholar 

  • Ehrampoush, M. H., Miria, M., Salmani, M. H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering, 13(1), 1–7. https://doi.org/10.1186/s40201-015-0237-4

    Article  CAS  Google Scholar 

  • Esam, J. A. K. (2015). Green synthesis of magnetite iron oxide nanoparticles by using Al-Abbas’s (AS) Hund fruit (Citrus medica) var. Sarcodactylis Swingle extract and used in Al-’alqami river water treatment. Journal of Natural Sciences Research, 5(20), 125–135.

  • Fato, F. P., Li, D. W., Zhao, L. J., Qiu, K., & Long, Y. T. (2019). Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega, 4(4), 7543–7549. https://doi.org/10.1021/acsomega.9b00731

    Article  CAS  Google Scholar 

  • Garg, R., Garg, R., Sillanpää, M., Alimuddin, K., & M. A., Mubarak, N. M., & Tan, Y. H. (2023). Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents. Scientific Reports, 13(1), 6859. https://doi.org/10.1038/s41598-023-33843-3

    Article  CAS  Google Scholar 

  • Garg, Rajni, Garg, R., Thakur, A., & Arif, S. M. (2020). Water remediation using biosorbent obtained from agricultural and fruit waste. Materials Today: Proceedings, 46(xxxx), 6669–6672. https://doi.org/10.1016/j.matpr.2021.04.132

  • Garg, R., Rani, P., Garg, R., & Eddy, N. O. (2021). Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turkish Journal of Chemistry, 45(6), 1690–1706. https://doi.org/10.3906/kim-2106-59

    Article  CAS  Google Scholar 

  • Garg, Rishav, Garg, R., Khan, M. A., Bansal, M., & Garg, V. K. (2022a). Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. Environmental Science and Pollution Research, 1–10. https://doi.org/10.1007/s11356-022-21111-2

  • Garg, Rishav, Garg, R., Okon Eddy, N., Ibrahim Almohana, A., Fahad Almojil, S., Amir Khan, M., & Ho Hong, S. (2022b). Biosynthesized silica-based zinc oxide nanocomposites for the sequestration of heavy metal ions from aqueous solutions. Journal of King Saud University - Science, 34(4), 101996. https://doi.org/10.1016/j.jksus.2022.101996

  • Gong, J. L., Wang, X. Y., Zeng, G. M., Chen, L., Deng, J. H., Zhang, X. R., & Niu, Q. Y. (2012). Copper (II) removal by pectin-iron oxide magnetic nanocomposite adsorbent. Chemical Engineering Journal, 185–186, 100–107. https://doi.org/10.1016/j.cej.2012.01.050

    Article  CAS  Google Scholar 

  • Han, F., Zong, Y., Jassby, D., Wang, J., & Tian, J. (2020). The interactions and adsorption mechanisms of ternary heavy metals on boron nitride. Environmental Research, 183, 109240. https://doi.org/10.1016/j.envres.2020.109240

  • Izadiyan, Z., Shameli, K., Miyake, M., Hara, H., Mohamad, S. E. B., Kalantari, K., et al. (2020). Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian Journal of Chemistry, 13(1), 2011–2023. https://doi.org/10.1016/j.arabjc.2018.02.019

    Article  CAS  Google Scholar 

  • Jamzad, M., & Kamari Bidkorpeh, M. (2020). Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of Nanostructure in Chemistry, 10(3), 193–201. https://doi.org/10.1007/s40097-020-00341-1

  • Karagoly, H., Al Rhyaf, A., Naji, H., Albukhaty, S., & Almalki, F. A. (2022). and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. 254–265.

  • Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043

    Article  CAS  Google Scholar 

  • Kataria, N., & Garg, V. K. (2018). Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism. Chemosphere, 208, 818–828. https://doi.org/10.1016/j.chemosphere.2018.06.022

    Article  CAS  Google Scholar 

  • Khatami, M., Alijani, H. Q., Fakheri, B., Mobasseri, M. M., Heydarpour, M., Farahani, Z. K., & Khan, A. U. (2019). Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. Journal of Cleaner Production, 208, 1171–1177. https://doi.org/10.1016/j.jclepro.2018.10.182

    Article  CAS  Google Scholar 

  • Lin, Y. F., & Chen, J. L. (2014). Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency. Journal of Colloid and Interface Science, 420, 74–79. https://doi.org/10.1016/j.jcis.2014.01.008

    Article  CAS  Google Scholar 

  • Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T. E., & Sarris, I. E. (2021). Heavy metal adsorption using magnetic nanoparticles for water purification: A critical review. Materials, 14(24). https://doi.org/10.3390/ma14247500

  • Liu, J. F., Zhao, Z. S., & Jiang, G. B. (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42(18), 6949–6954. https://doi.org/10.1021/es800924c

    Article  CAS  Google Scholar 

  • Mahanty, S., Bakshi, M., Ghosh, S., Gaine, T., Chatterjee, S., Bhattacharyya, S., et al. (2019). Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: Synthesis, adsorption isotherm, kinetics and thermodynamics study. Environmental Nanotechnology, Monitoring and Management, 12(October), 100276. https://doi.org/10.1016/j.enmm.2019.100276

  • Mahmoud, A. E. D., Al-Qahtani, K. M., Alflaij, S. O., Al-Qahtani, S. F., & Alsamhan, F. A. (2021). Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-91093-7

    Article  CAS  Google Scholar 

  • Martínez-Cabanas, M., López-García, M., Barriada, J. L., Herrero, R., & Sastre de Vicente, M. E. (2016). Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chemical Engineering Journal, 301(V), 83–91. https://doi.org/10.1016/j.cej.2016.04.149

  • Naseem, T., & Farrukh, M. A. (2015). Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. Journal of Chemistry, 2015. https://doi.org/10.1155/2015/912342

  • Niraimathee, V. A., Subha, V., Ernest Ravindran, R. S., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3), 227–240. https://doi.org/10.1504/IJESD.2016.077370

    Article  Google Scholar 

  • Nourmohammadi, H., Fazlavi, A., & Keyvan, S. (2021). Modeling cobalt ion adsorption with synthesized magnetite bentonite (SMB) nano-absorbent: By CCD. Iranian Journal of Chemistry and Chemical Engineering, 40(5), 1532–1540. https://doi.org/10.30492/ijcce.2020.43233

  • Paul, S., Saikia, J. P., Samdarshi, S. K., & Konwar, B. K. (2009). Investigation of antioxidant property of iron oxide particlesby 1′-1′diphenylpicryl-hydrazyle (DPPH) method. Journal of Magnetism and Magnetic Materials, 321(21), 3621–3623. https://doi.org/10.1016/j.jmmm.2009.07.004

    Article  CAS  Google Scholar 

  • Prasad, C., Gangadhara, S., & Venkateswarlu, P. (2016). Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Applied Nanoscience (switzerland), 6(6), 797–802. https://doi.org/10.1007/s13204-015-0485-8

    Article  CAS  Google Scholar 

  • Ramutshatsha-Makhwedzha, D., Ngila, J. C., Ndungu, P. G., & Nomngongo, P. N. (2019). Ultrasound assisted adsorptive removal of Cr, Cu, Al, Ba, Zn, Ni, Mn, Co and Ti from seawater using Fe2O3-SiO2-PAN nanocomposite: Equilibrium kinetics. Journal of Marine Science and Engineering, 7(5). https://doi.org/10.3390/jmse7050133

  • Rani, S., Sharma, S., Bansal, M., Garg, R., & Garg, R. (2022). Enhanced Zn(II) adsorption by chemically modified sawdust based biosorbents. Environmental Science and Pollution Research, (Ii). https://doi.org/10.1007/s11356-022-22963-4

  • Roopalatha, U. C., & Mala Nair, V. (2013). Phytochemical analysis of successive reextracts of the leaves of Moringa oleifera Lam. International Journal of Pharmacy and Pharmaceutical Sciences, 5(SUPPL 3), 629–634.

    Google Scholar 

  • Saied, E., Salem, S. S., Al-Askar, A. A., Elkady, F. M., Arishi, A. A., & Hashem, A. H. (2022). Mycosynthesis of hematite (α-Fe2O3) nanoparticles using Aspergillus niger and their antimicrobial and photocatalytic activities. Bioengineering, 9(8). https://doi.org/10.3390/bioengineering9080397

  • Sandhya, J., & Kalaiselvam, S. (2020). Biogenic synthesis of magnetic iron oxide nanoparticles using inedible borassus flabellifer seed coat: Characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis. Materials Research Express, 7(1). https://doi.org/10.1088/2053-1591/ab6642

  • Saruchi, & Kumar, V. (2019). Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb +2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry, 12(3), 316–329. https://doi.org/10.1016/j.arabjc.2016.11.009

    Article  CAS  Google Scholar 

  • Sathya, K., Saravanathamizhan, R., & Baskar, G. (2017). Ultrasound assisted phytosynthesis of iron oxide nanoparticle. Ultrasonics Sonochemistry, 39(May), 446–451. https://doi.org/10.1016/j.ultsonch.2017.05.017

    Article  CAS  Google Scholar 

  • Sebastian, A., Nangia, A., & Prasad, M. N. V. (2018). A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. Journal of Cleaner Production, 174, 355–366. https://doi.org/10.1016/j.jclepro.2017.10.343

    Article  CAS  Google Scholar 

  • Senthil, M., & Ramesh, C. (2012). Biogenic synthesis of Fe3O34 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest Journal of Nanomaterials and Biostructures, 7(4), 1655–1661.

    Google Scholar 

  • Sri Sindhura, K., Prasad, T. N. V. K. V., Panner Selvam, P., & Hussain, O. M. (2014). Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Applied Nanoscience (switzerland), 4(7), 819–827. https://doi.org/10.1007/s13204-013-0263-4

    Article  CAS  Google Scholar 

  • Tizro, S., & Baseri, H. (2017). Removal of cobalt ions from contaminated water using magnetite based nanocomposites: Effects of various parameters on the removal efficiency. Journal of Water and Environmental Nanotechnology, 2(23), 174–185. 10.22090/

  • Viju Kumar, V. G., & Prem, A. A. (2018). Green synthesis and characterization of iron oxide nanoparticles using phyllanthus niruri extract. Oriental Journal of Chemistry, 34(5), 2583–2589. https://doi.org/10.13005/ojc/340547

  • Wu, Z., Li, W., Webley, P. A., & Zhao, D. (2012). General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Advanced Materials, 24(4), 485–491. https://doi.org/10.1002/adma.201103789

    Article  CAS  Google Scholar 

  • Yadav, V. K., Ali, D., Khan, S. H., Gnanamoorthy, G., Choudhary, N., Yadav, K. K., et al. (2020). Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials, 10(8), 1–17. https://doi.org/10.3390/nano10081551

    Article  CAS  Google Scholar 

  • Yusefi, M., Shameli, K., Ali, R. R., Pang, S. W., & Teow, S. Y. (2020). Evaluating Anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. Journal of Molecular Structure, 1204, 127539. https://doi.org/10.1016/j.molstruc.2019.127539

Download references

Acknowledgements

Sincere thanks are due to Rayat Bahra University, Chandigarh, for all the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Rajat Sharma: Conceptualisation, investigation, writing-original draft; Rajni Garg: Formal analysis, methodology, writing-original draft; Manoj Bali: supervision, resources, validation; Nnabuk Okon Eddy: Writing-review & editing, validation.

Corresponding author

Correspondence to Rajni Garg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Garg, R., Bali, M. et al. Biogenic synthesis of iron oxide nanoparticles using leaf extract of Spilanthes acmella: antioxidation potential and adsorptive removal of heavy metal ions. Environ Monit Assess 195, 1345 (2023). https://doi.org/10.1007/s10661-023-11860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11860-z

Keywords

Navigation