Skip to main content
Log in

Residue and soil dissipation kinetics of chloroacetanilide herbicides on rice (Oryzae sativa L.) and assessing the impact on soil microbial parameters and enzyme activity

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present investigation determines the persistence of herbicides like butachlor and pretilachlor in Indian soil, and their impact on soil biological properties including microbial biomass carbon (MBC), total microbial population numbers, and enzyme activities. Butachlor was degraded faster in autumn rice soil (t1/2 of 10–13 days) than in winter rice soil (half-life of 16–18 days). The t1/2 of pretilachlor in winter rice was 12–16 days. Regardless of the seasons under cultivation, no pesticide residue was detected in rice at harvest. Herbicides induced an initial decline (0–14th days after application) in MBC (averages of 332.7–478.4 g g−1 dry soil in autumn rice and 299.6–444.3 g g−1 dry soil in winter rice), microbial populations (averages of 6.4 cfu g−1 in autumn rice and 4.6 cfu g−1 in winter rice), and phosphatase (averages of 242.6–269.3 μg p-nitrophenol g−1 dry soil h−1 in autumn rice and 188.2–212.2 μg p-nitrophenol g−1 dry soil h−1 in winter rice). The application of herbicides favored dehydrogenase (averages of 123.1–156.7 g TPF g−1 dry soil in autumn and 126.7–151.1 g TPF g−1 dry soil in winter) and urease activities (averages of 279.0–340.4 g NH4 g−1 soil 2 h−1 in autumn and 226.7–296.5 g NH4 g−1 soil 2 h−1 in winter) in rice soil at 0–14th DAA. The study suggests that applications of butachlor and pretilachlor at the rates of 1000 g ha−1 and 750 g ha−1, respectively, to control the weeds in the transplanted rice fields do not have any negative impact on the harvested rice and associated soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the present investigation are available from the corresponding author on reasonable request.

References

  • Adachi, A., Komura, T., Andon, A., & Okano, T. (2007). Effects of spherosomes on the degradation of pretilachlor and esprocarb in soil. Journal of Health Sciences, 53(5), 600–603. https://doi.org/10.1248/jhs.53.600

    Article  CAS  Google Scholar 

  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42. https://doi.org/10.3390/toxics9030042

    Article  CAS  Google Scholar 

  • Ali, S., Liu, K., Ahmed, W., Jing, H., Qaswar, M., Kofi Anthonio, C., Maitlo, A. A., Lum, Z., Liu, L., & Zhang, H. (2021). Nitrogen mineralization, soil microbial biomass and extracellular enzyme activities regulated by long-term N fertilizer inputs: A comparison study from upland and paddy soils in a red soil region of China. Agronomy, 11(10), 2057. https://doi.org/10.3390/agronomy11102057

    Article  CAS  Google Scholar 

  • Arora, S. D., & Sahni, D. (2016). Pesticides effect on soil microbial ecology and enzyme activity-An overview. Journal of Applied and Natural Science, 8(2), 1126–1132.

    Article  CAS  Google Scholar 

  • Baishya, A., Gogoi, B., Hazarika, J., Hazarika, J. P., Bora, A. S., Das, A. K., Borah, M., & Sutradhar, P. (2016). Maximizing soil productivity and profitability through crop intensification and diversification with rice (Oryza sativa)-based cropping systems in acid soils of Assam. Indian Journal of Agronomy, 61, 274–280.

    CAS  Google Scholar 

  • Bhattacharyya, P.N., & Sarmah, S.R. (2018). The role of tea soil microflora in tea cultivation. In V. S. Sharma, & K. Gunasekare (Eds.), Global tea science: Burleigh Dodds Science Publishing (pp 135–167). Sawston, Cambridge, UK. https://doi.org/10.19103/AS.2017.0036.24

  • Briceno, G., Lamilla, C., Leiva, B., Levio, M., Donoso-Pinol, P., Schalchli, H., Gallardo, F., & Diez, M. C. (2020). Pesticide-tolerant bacteria isolated from a biopurification system to remove commonly used pesticides to protect water resources. PLoS One, 15(6), e0234865. https://doi.org/10.1371/journal.pone.0234865

    Article  CAS  Google Scholar 

  • Cappucino, J.G., & Sherman, N. (2004). Microbiology–A Laboratory Manual 7th edition. Pearson Education, Dorling Kindersley (India) Pvt., Ltd.

  • Carpio, M. J., Sanchez-Martín, M. J., Rodríguez-Cruz, M. S., & Marín-Benito, J. M. (2021). Effect of organic residues on pesticide behavior in soils: A review of laboratory research. Environments, 8(4), 32. https://doi.org/10.3390/environments8040032

    Article  Google Scholar 

  • Casida Jr, L. E. (1968). Methods for the isolation and estimation of activity of soil bacteria. In T. R. G. Grev, & D. Parkinson (Eds.), The ecology of soil bacteria (DD. 97–122). Liverpool University Press, UK.

  • Chauhan, B. S. (2020). Grand Challenges in Weed Management. Front. Agron., 1, 3. https://doi.org/10.3389/fagro.2019.00003

    Article  Google Scholar 

  • Chen, Q., Wang, C. H., Deng, S. K., Wu, Y. D., Li, Y., Yao, L., Jiang, J. D., Yan, X., He, J., & Li, S. P. (2014). Novel three-component Rieske non-heme iron oxygenase system catalyzing the N-dealkylation of chloroacetanilide herbicides in sphingomonads DC-6 and DC-2. Applied and Environment Microbiology, 80, 5078–5085. https://doi.org/10.1128/AEM.00659-14

    Article  CAS  Google Scholar 

  • Cheng, M., Meng, Q., Yang, Y., Chu, C., Chen, Q., Li, Y., Cheng, D., Hong, Q., Yan, X., & He, J. (2017). The two-component monooxygenase MeaXY initiates the downstream pathway of chloroacetanilide herbicide catabolism in sphingomonads. Applied and Environment Microbiology, 83(7), e03241-e3316. https://doi.org/10.1128/AEM.03241-16

    Article  CAS  Google Scholar 

  • Daisley, B. A., Chernyshova, A. M., Thompson, G. J., & Allen-Vercoe, E. (2022). Deteriorating microbiomes in agriculture-the unintended effects of pesticides on microbial life. Microbiome Research Reports, 1, 6. https://doi.org/10.20517/mrr.2021.08

  • Dar, M. H., Bano, D. A., Waza, S. A., Zaidi, N. W., Majid, A., Shikari, A. B., Ahangar, M. A., Hossain, M., Kumar, A., & Singh, U. S. (2021). Abiotic stress tolerance-progress and pathways of sustainable rice production. Sustainability, 13(4), 2078. https://doi.org/10.3390/su13042078

    Article  Google Scholar 

  • Dharumarajan, S., Sankar, R., & Arun, S. (2011). Persistence and dissipation of pretilachlor in soil, plant and water of coastal rice ecosystem. Indian Journal of Weed Science, 43(3&4), 199–202.

    Google Scholar 

  • Diao, J., Lv, C., Wan, X., Dang, Z., Zhu, W., & Zhou, Z. (2009). Influence of soil properties on the enantioselective dissipation of the herbicide lactofen in soils. Journal of Agricultural and Food Chemistry, 57, 5865–5871. https://doi.org/10.1021/jf9006856

    Article  CAS  Google Scholar 

  • Diao, J., Xu, P., Wang, P., Lu, D., Lu, Y., & Zhou, Z. (2010). Enantioselective degradation in sediment and aquatic toxicity to Daphnia magna of the herbicide lactofen enantiomers. Journal of Agricultural and Food Chemistry, 58, 2439–2445.

    Article  CAS  Google Scholar 

  • Domsch, K. H., Gams, W., & Anderson, T. H. (2007). Compendium of soil fungi (2nd ed.). IHW-Verlag.

    Google Scholar 

  • Gogoi, B., Borah, N., Baishya, A., Nath, D. J., Dutta, S., Das, R., Bhattacharyya, D., Sharma, K. K., Valente, D., & Petrosillo, I. (2021). Enhancing soil ecosystem services through sustainable integrated nutrient management in double rice-cropping system of North-East India. Ecological Indicators, 132, 108262. https://doi.org/10.1016/j.ecolind.2021.108262

    Article  CAS  Google Scholar 

  • Gunstone, T., Cornelisse, T., Klein, K., Dubey, A., & Donley, N. (2021). Pesticides and soil invertebrates: A hazard assessment. Frontiers in Environmental Science, 9, 643847. https://doi.org/10.3389/fenvs.2021.643847

    Article  Google Scholar 

  • Gupta, A., Gupta, R., & Singh, R. L. (2017). Microbes and environment. In R. Singh (Ed.), Principles and applications of environmental biotechnology for a sustainable future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-1866-4_3

  • Gupta, A., Singh, U. B., Sahu, P. K., Paul, S., Kumar, A., Malviya, D., Singh, S., Kuppusamy, P., Singh, P., Paul, D., Rai, J. P., Singh, H. V., Manna, M. C., Crusberg, T. C., Kumar, A., & Saxena, A. K. (2022). Linking soil microbial diversity to modern agriculture practices: A review. International Journal of Environmental Research and Public Health, 19(5), 3141. https://doi.org/10.3390/ijerph19053141

    Article  Google Scholar 

  • Hakim, M. A., Juraimi, A. S., Karim, S. M. R., Khan, M. S. I., Islam, M. S., Choudhury, M. K., et al. (2021). Effectiveness of herbicide to control rice weeds in diverse saline environments. Sustainability, 13(4), 2053. https://doi.org/10.3390/su13042053

    Article  Google Scholar 

  • Hamid, M. I., & Ghazanfar, M. U. (2022). Integrated management of rice diseases. In N. Sarwar, Atique-ur-Rehman, S. Ahmad, & M. Hasanuzzaman (Eds.), Modern techniques of rice crop production. Springer, Singapore. https://doi.org/10.1007/978-981-16-4955-4_22

  • Haque, M. A., Rafii, M. Y., Yusoff, M. M., Ali, N. S., Yusuff, O., Datta, D. R., Anisuzzaman, M., & Ikbal, M. F. (2021). Recent advances in rice varietal development for durable resistance to biotic and abiotic stresses through marker-assisted gene pyramiding. Sustainability, 13(19), 10806. https://doi.org/10.3390/su131910806

    Article  CAS  Google Scholar 

  • Hassaan, M. A., & Nemr, A. E. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research, 46(3), 207–220. https://doi.org/10.1016/j.ejar.2020.08.007

    Article  Google Scholar 

  • Holt, J. H. (1994). Bergey's manual of determinative bacteriology, 9th ed. Lippincott, Williams & Wilkins, Philadelphia, PA.

  • Hossain, K., Timsina, J., Johnson, D. E., Gathala, M. K., & Krupnik, T. J. (2020). Multi-year weed community dynamics and rice yields as influenced by tillage, crop establishment, and weed control: Implications for rice-maize rotations in the eastern Gangetic plains. Crop Protection, 138, 105334. https://doi.org/10.1016/j.cropro.2020.105334

    Article  CAS  Google Scholar 

  • Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. Molecules, 23(9), 2313. https://doi.org/10.3390/molecules23092313

    Article  CAS  Google Scholar 

  • James, T. K., Ghanizadeh, H., Harrington, K. C., & Bolan, N. S. (2021). Degradation of atrazine and bromacil in two forestry waste products. Science Report, 11(1), 3284. https://doi.org/10.1038/s41598-021-83052-z

    Article  CAS  Google Scholar 

  • Kaur, P., Kaur, P., & Bhullar, M. S. (2015). Persistence behaviour of pretilachlor in puddled paddy fields under subtropical humid climate. Environmental Monitoring and Assessment, 187, 524.

    Article  Google Scholar 

  • Kaur, R., Singh, D., Kumari, A., et al. (2021). Pesticide residues degradation strategies in soil and water: A review. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03696-2

    Article  Google Scholar 

  • Khan, A. R., Chandra, D., Nanda, P., Singh, S. S., Ghorai, A. K., & Singh, S. R. (2004). Integrated nutrient management for sustainable rice production. Archives of Agronomy and Soil Science, 50(2), 161–165. https://doi.org/10.1080/03650340310001612988

    Article  CAS  Google Scholar 

  • Kondratowicz, M. K. (2007). Susceptibility of organic matter to oxidation and soil microbiological activity under conditions of varied crop rotation systems and fertilization. Polish Journal of Soil Science, 40(1), 89–99.

    Google Scholar 

  • Liu, T., Wang, P., Lu, Y., Zhou, G., Diao, J., & Zhou, Z. (2012). Enantioselective bioaccumulation of soil-associated fipronil enantiomers in Tubifex tubifex. Journal of Hazardous Materials, 219–220, 50–56. https://doi.org/10.1016/j.jhazmat.2012.03.042

    Article  CAS  Google Scholar 

  • Mahanta, K., Dutta, P., Nath, D. J., Deka, J., Barua, I. C., Deka, N. C., & Sarma, A. K. (2017). Long-term application of herbicides on soil microbial demography in rice-rice cropping sequence of North-East India. Indian Journal of Weed Science, 49(4), 317–323.

    Article  Google Scholar 

  • Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A. K., & Manna M. C. (2020). Impact of agrochemicals on soil health. In M. N. V. Prasad (Ed.), Agrochemicals detection, treatment and remediation (pp. 161–187). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00007-6

  • Mebdoua, S. (2018). Pesticide residues in fruits and vegetables. In J. M. Merillon, & K. Ramawat (Eds.), Bioactive molecules in food. Phytochemistry. Cham. https://doi.org/10.1007/978-3-319-54528-8_76-1

  • Medo, J., Makova, J., Medova, J., et al. (2021). Changes in soil microbial community and activity caused by application of dimethachlor and linuron. Science Report, 11, 12786. https://doi.org/10.1038/s41598-021-91755-6

    Article  CAS  Google Scholar 

  • Meena, A., & Rao, K. S. (2021). Assessment of soil microbial and enzyme activity in the rhizosphere zone under different land use/cover of a semiarid region. India. Ecological Processes, 10, 16. https://doi.org/10.1186/s13717-021-00288-3

    Article  Google Scholar 

  • Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijaya Kumar, V., Brtnicky, M., Sharma, M. P., Yadav, G. S., Jhariya, M. K., et al. (2020). Impact of agrochemicals on soil microbiota and management: A review. Land, 9(2), 34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Mohanty, S. S., & Jena, H. M. (2019). A systemic assessment of the environmental impacts and remediation strategies for chloroacetanilide herbicides. Journal of Water Process Engineering, 31, 100860. https://doi.org/10.1016/j.jwpe.2019.100860

    Article  Google Scholar 

  • Mortimer, P. E., Jeewon, R., Xu, J. C., Lumyong, S., & Wanasinghe, D. N. (2021). Morpho-phylo taxonomy of novel dothideomycetous fungi associated with dead woody twigs in Yunnan Province. China. Frontiers in Microbiology, 12, 654683. https://doi.org/10.3389/fmicb.2021.654683

    Article  Google Scholar 

  • Murata, T., Kazuhuro, T., Masumi, I., & Kazunari, Y. (2004). Effect of mefenacet and pretilachlor applications on phospholipids fatty acid profiles on soil microbial communities in rice paddy soil. Soil Science and Plant Nutrition, 50, 349–356.

    Article  CAS  Google Scholar 

  • Naorem, A., Maverick, J., Singh, P., & Udayana S. P. (2021). Microbial community structure in organic farming and their management. In V. S. Meena, S. K. Meena, A. Rakshit, J. Stanley, & C. Srinivasarao (Eds.), Advances in organic farming (pp. 47–58). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822358-1.00004-3

  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148

    Article  Google Scholar 

  • Panigrahi, K. K., Mohanty, A., Padhan, S. R., & Guru, R. K. S. (2021). Genotoxicity and DNA Damage induced by herbicides and toxins in plants. In Z. Khan, M. Y. K. Ansari, & D. Shahwar (Eds.), Induced genotoxicity and oxidative stress in plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-2074-4_2

  • Panse, V. G., & Sukhatme, P. V. (1967). Statistical methods for agriculture workers. Indian council of Agriculture Research (ICAR), New Delhi, India.

  • Pileggi, M., Pileggi, A. V., Michael, J., & Sadowsky, M. J. (2020). Herbicide bioremediation: from strains to bacterial communities. Heliyon, 6(12), e05767. https://doi.org/10.1016/j.heliyon.2020.e05767

    Article  CAS  Google Scholar 

  • Pose-Juan, E., Igual, J. M., Sanchez-Martín, M. J., & Rodriguez-Cruz, M. S. (2017). Influence of herbicide triasulfuron on soil microbial community in an unamended soil and a soil amended with organic residues. Frontiers in Microbiology, 8, 378. https://doi.org/10.3389/fmicb.2017.00378

    Article  Google Scholar 

  • Raffa, C. M., & Chiampo, F. (2021). Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering (basel, Switzerland), 8(7), 92. https://doi.org/10.3390/bioengineering8070092

    Article  CAS  Google Scholar 

  • Rahman Abdul, N. S. N., Abdul Hamid, N. W., & Nadarajah, K. (2021). Effects of abiotic stress on soil microbiome. International Journal of Molecular Science, 22(16), 9036. https://doi.org/10.3390/ijms22169036

    Article  CAS  Google Scholar 

  • Rao, P. C., Rama Lakshmi, C. H. S., Madhavi, M., Swapna, G., & Sireesha, A. (2012). Butachlor dissipation in rice grown soil and its residues in grain. Indian Journal of Weed Science, 44(2), 84–87.

    Google Scholar 

  • Sarmah, S. R., Bhattacharyya, P. N., & Barooah, A. K. (2020). Microbial biocides-prominent alternatives of chemicals in tea disease management. Journal of Biological Control, 34, 144–152. https://doi.org/10.18311/jbc/2020/22689

  • Shilpakar, O., Karki, B., & Rajbhandari, B. (2020). Pretilachlor poisoning: A rare case of a herbicide masquerading as organophosphate toxicity. Clinical Case Reports, 8(12), 3507–3509. https://doi.org/10.1002/ccr3.3473

    Article  Google Scholar 

  • Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2017). Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech, 7(1), 15. https://doi.org/10.1007/s13205-016-0586-4

  • Singh, V., & Jat., M. L., Ganie, Z. A., Chauhan, B. S., & Gupta, R. K. (2016). Herbicide options for effective weed management in dry direct-seeded rice under scented rice-wheat rotation of western Indo-Gangetic Plains. Crop Protection, 81, 168–176. https://doi.org/10.1016/j.cropro.2015.12.021

    Article  CAS  Google Scholar 

  • Streletskii, R., Astaykina, A., Krasnov, G., & Gorbatov, V. (2022). Changes in bacterial and fungal community of soil under treatment of pesticides. Agronomy, 12(1), 124. https://doi.org/10.3390/agronomy12010124

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4, 479–548. https://doi.org/10.1016/0038-0717(72)90064-8

    Article  CAS  Google Scholar 

  • Thiour-Mauprivez, C., Martin-Laurent, F., Calvayrac, C., & Barthelmebs, L. (2019). Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? Science of the Total Environment, 684, 314–325. https://doi.org/10.1016/j.scitotenv.2019.05.230

    Article  CAS  Google Scholar 

  • Torabi, E., Wiegert, C., Guyot, B., Vuilleumier, S., & Imfeld, G. (2020). Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: Insights from compound-specific isotope and biomolecular analyses. Journal of Environmental Sciences, 92, 163–175. https://doi.org/10.1016/j.jes.2020.02.009

    Article  CAS  Google Scholar 

  • Tripthi, D. K., Varma, R. K., Singh, S., et al. (2020). Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Science Reports, 10, 14078. https://doi.org/10.1038/s41598-020-65124-8

    Article  Google Scholar 

  • Tudi, M., Daniel, R. H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2020). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112

    Article  CAS  Google Scholar 

  • Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G., Jr. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616–617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

    Article  CAS  Google Scholar 

  • Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Sciences, 7, 67. https://doi.org/10.3389/fpls.2016.00067

    Article  Google Scholar 

  • Witt, C., Gaunt, J., Galicia, C., et al. (2000). A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology and Fertility of Soils, 30, 510–519. https://doi.org/10.1007/s003740050030

    Article  CAS  Google Scholar 

  • Yadav, G. S., Lal, R., Meena, R. S., Babu, S., Das, A., Bhowmik, S. N., Datta, M., Layak, J., & Saha, P. (2019). Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators, 105, 303–315.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Directorate of Weed Research in Jabalpur, Madhya Pradesh, India, for providing the facility necessary for the study and research. The principal of NNS College, Titabar, Jorhat, Assam, India, is heartily thanked by the corresponding author for giving the logistics and support. Supplementary Figure (SP Fig. 1) was created with assistance from Dr. Dhruvajit Borah, Department of Chemistry, N. N. Saikia College, Titabar, Jorhat, Assam, India.

Author information

Authors and Affiliations

Authors

Contributions

The idea, formulation and design of the research, experimentation, and plan for research communications were made by Kaberi Mahanta, Jayanta Deka, Dipjyoti Rajkhowa, and Pranaba Nanda Bhattacharyya. Kaberi Mahanta, Rajat Parit, Anshuman Kohli, and Binoy Kumar Medhi devised and carried out the experimentation procedures in laboratory and field conditions. The statistical analysis for data production was carried out by Anjan Kumar Sharma, Pranaba Nanda Bhattacharyya, and Harendra Verma. Kaberi Mahanta, Pranaba Nanda Bhattacharyya, Dipjyoti Rajkhowa, and Didier Lesueur assisted in manuscript preparation, review, and editing. The manuscript was rewritten, revised, and finally compiled and modified by Pranaba Nanda Bhattacharyya, Didier Lesueur, and Kaberi Mahanta. The findings were considered by all authors, and they all contributed to the final publication. The final manuscript has been read and approved by all the authors.

Corresponding author

Correspondence to Pranaba Nanda Bhattacharyya.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanta, K., Bhattacharyya, P.N., Sharma, A.K. et al. Residue and soil dissipation kinetics of chloroacetanilide herbicides on rice (Oryzae sativa L.) and assessing the impact on soil microbial parameters and enzyme activity. Environ Monit Assess 195, 910 (2023). https://doi.org/10.1007/s10661-023-11513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11513-1

Keywords

Navigation