Skip to main content

Advertisement

Log in

Effect of salinity on valves morphology in freshwater diatoms

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increased salt concentration is one of the most widespread problems affecting freshwater worldwide. Aquatic communities, and in particular periphytic diatoms, react to this alteration in water quality by modifying their structural parameters and physiology at the individual level, which is commonly manifested by the appearance of teratological forms. The present work presents the results of an experimental laboratory study in which a biofilm grown on artificial substrates was subjected to a gradient of water conductivities for 4 weeks. The results show an increase in the number of deformed valves over time proportionally to the increase in conductivity for each experimental treatment. These effects are also verified by analyzing the concentration of chlorophyll-a in the experimental biofilms, which demonstrate a metabolic response to the induced osmotic stress. No changes were recorded; however, in species richness or diversity of taxa present in the treatments. Our results, therefore, confirm at the experimental level numerous previous field observations about the harmful effect of salinity on periphytic diatoms, and also their ability to reintegrate with the new stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data available within the article or its supplementary materials can be shared publicly.

Code availability

Not applicable.

References

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  • Andresen, N. A., & Tuchman, M. L. (1991). Anomalous diatom populations in Lakes Michigan and Huron in 1983. Journal of Great Lakes Research, 17(1), 144–149. https://doi.org/10.1016/S0380-1330(91)71350-6

    Article  Google Scholar 

  • Arini, A., Durant, F., Coste, M., Delmas, F., & Feurtet-Mazel, A. (2013). Cadmium decontamination and reversal potential of teratological forms of the diatom Planothidium frequentissimum (Bacillariophyceae) after experimental contamination. Journal of Phycology, 49(2), 361–370. https://doi.org/10.1111/jpy.12044

    Article  CAS  Google Scholar 

  • Arini, A., Feurtet-Mazel, A., Morin, S., & Maury-brachet, R. (2012). Remediation of a watershed contaminated by heavy metals: A 2-year field biomonitoring of periphytic bio films. Science of the Total Environment, 425, 242–253. https://doi.org/10.1016/j.scitotenv.2012.02.067

  • Berger, E., Frör, O., & Schäfer, R. B. (2019). Salinity impacts on river ecosystem processes: A critical mini-review. Philosophical Transactions of the Royal Society B, 374(1764), 20180010.

    Article  CAS  Google Scholar 

  • Blanco Lanza, S., Álvarez Blanco, I., Cejudo Figueiras, C., & Bécares Mantecón, E. (2011). Guía de las diatomeas de la Cuenca del Duero. Ministerio de Medio Ambiente, Medio Rural y Marino / Confederación Hidrográfica del Duero.

  • Brittingham, M. C., Maloney, K. O., Farag, A. M., Harper, D. D., & Bowen, Z. H. (2014). Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environmental Science and Technology, 48(19), 11034–11047. https://doi.org/10.1021/es5020482

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles, M., Brucet, S., Carrasco, S., Flor-Arnau, N., Ordeix, M., Ponsá, S., & Coring, E. (2017). Effects of potash mining on river ecosystems: An experimental study. Environmental Pollution, 224(2017), 759–770. https://doi.org/10.1016/j.envpol.2016.12.072

    Article  CAS  Google Scholar 

  • Cañedo-argüelles, M., Bundschuh, M., Gutiérrez-cánovas, C., Kefford, B. J., Prat, N., Trobajo, R., & Schäfer, R. B. (2014). Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. Science of the Total Environment, 476–477, 634–642. https://doi.org/10.1016/j.scitotenv.2013.12.067

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles, M., Hawkins, C. P., Kefford, B. J., Schäfer, R. B., Dyack, B. J., Brucet, S., et al. (2016). Saving freshwater from salts. Science, 351(6276), 914–916. https://doi.org/10.1126/science.aad3488

    Article  Google Scholar 

  • Cañedo-Argüelles, M., Kefford, B. J., Piscart, C., Prat, N., Schäfer, R. B., & Schulz, C. J. (2013). Salinisation of rivers: An urgent ecological issue. Environmental Pollution, 173, 157–167. https://doi.org/10.1016/j.envpol.2012.10.011

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles, M., Kefford, B., & Schäfer, R. (2019). Salt in freshwaters: Causes, effects and prospects - Introduction to the theme issue. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1764). https://doi.org/10.1098/rstb.2018.0002

  • Chen, S., Chen, M., Wang, Z., Qiu, W., Wang, J., Shen, Y., et al. (2016). Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environmental Toxicology and Pharmacology, 45, 179–186. https://doi.org/10.1016/j.etap.2016.05.032

    Article  CAS  Google Scholar 

  • Choi, T. S., Kang, E. J., Kim, J., & Kim, K. Y. (2010). Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae, 25(1), 17–26. https://doi.org/10.4490/algae.2010.25.1.017

  • Cochero, J., Licursi, M., & Gómez, N. (2017). Effects of pulse and press additions of salt on biofilms of nutrient-rich streams. Science of the Total Environment, 579, 1496–1503. https://doi.org/10.1016/j.scitotenv.2016.11.152

    Article  CAS  Google Scholar 

  • Cox, E. J. (1995). Morphological variation in widely distributed diatom taxa: Taxonomic and ecological implications. In Proceedings of the 13th International Diatom Symposium, 1995 (pp. 335–345).

  • Crosa, G., Froebrich, J., Nikolayenko, V., Stefani, F., Galli, P., & Calamari, D. (2006). Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Research, 40(11), 2237–2245. https://doi.org/10.1016/j.watres.2006.04.004

    Article  CAS  Google Scholar 

  • Ditullio, G. R., Garrison, D. L., & Mathot, S. L. (1998). Dimethylsulfoniopropionate in sea ice algae from the ross sea polynya. Antarctic Sea Ice: Biological Processes, Interactions and Variability, 73, 139–146. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/AR073p0139

  • Duong, T. T., Morin, S., Herlory, O., Feurtet-Mazel, A., Coste, M., & Boudou, A. (2008). Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquatic Toxicology, 90(1), 19–28. https://doi.org/10.1016/j.aquatox.2008.07.012

    Article  CAS  Google Scholar 

  • Entrekin, S. A., Clay, N. A., Mogilevski, A., Howard-Parker, B., & Evans-White, M. A. (2019). Multiple riparian–stream connections are predicted to change in response to salinization. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1764). https://doi.org/10.1098/rstb.2018.0042

  • Falasco, E., Bona, F., Badino, G., Hoffmann, L., & Ector, L. (2009a). Diatom teratological forms and environmental alterations: A review. Hydrobiologia, 623(1), 1–35. https://doi.org/10.1007/s10750-008-9687-3

    Article  CAS  Google Scholar 

  • Falasco, E., Bona, F., Ginepro, M., Hlúbiková, D., Hoffmann, L., & Ector, L. (2009b). Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA, 35(5), 595–606. https://doi.org/10.4314/wsa.v35i5.49185

    Article  CAS  Google Scholar 

  • Falasco, E., Ector, L., Wetzel, C. E., & Badino, G. (2021). Looking back, looking forward : A review of the new literature on diatom teratological forms (2010–2020). Hydrobiologia. https://doi.org/10.1007/s10750-021-04540-x

    Article  Google Scholar 

  • Fritz, S. (2007). Salinity and climate reconstruction from diatoms in continental lake deposits. Encyclopedia of Quaternary Science, 1, 514–522.

    Google Scholar 

  • Glaser, K., & Karsten, U. (2020). Salinity tolerance in biogeographically different strains of the marine benthic diatom Cylindrotheca closterium (Bacillariophyceae). Journal of Applied Phycology, 32(6), 3809–3816.

    Article  CAS  Google Scholar 

  • Håkansson, H., & Chepurnov, V. (1999). A study of variation in valve morphology of the diatom Cyclotella Meneghiniana in monoclonal cultures: Effect of auxospore formation and different salinity conditions. Diatom Research, 14(2), 251–272. https://doi.org/10.1080/0269249X.1999.9705469

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., Ryan, P. D., et al. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Hill, B. H., Willingham, W. T., Parrish, L. P., & McFarland, B. H. (2000). Periphyton community responses to elevated metal concentrations in a Rocky Mountain stream. Hydrobiologia, 428(1), 161–169. https://doi.org/10.1023/A:1004028318542

    Article  CAS  Google Scholar 

  • Hiremath, S., & Mathad, P. (2010). Impact of salinity on the physiological and biochemical traits of Chlorella. Journal of Algal Biomass Utilization, 1(2), 51–59.

    Google Scholar 

  • Hofmann, G., Werum, M., & Lange-Bertalot, H. (2011). Diatomeen im Süßwasser-Benthos von Mitteleuropa: Bestimmungsflora Kieselalgen für die ökologische Praxis; über 700 der häufigsten Arten und ihrer Ökologie. Gantner.

  • Iglesias, M. C. A. (2020). A review of recent advances and future challenges in freshwater salinization. Limnetica, 39(1), 185–211. https://doi.org/10.23818/limn.39.13

  • IPCC, Intergovernmental Panel on Climate Change. (2013). Climate change 2013: The physical science basis. Working group I contribution to the intergovernmental panel on climate change fifth assessment report. Cambridge University Press, Cambridge.

  • ISO, International Organization for Standardization. (1992). The International Standard. Water quality. Measurement of biochemical parameters. Spectrometric determination of the chlorophyll-a concentration. ISO 10260. International Organization for Standardization Geneva.

  • Jackson, A. E., & Laycock, V. (1992). The effect of salinity on growth and amino acid composition in the marine diatom Nitzschia pungens. Canadian Journal of Botany, 70(11), 2198–2201. https://doi.org/10.1139/b92-272

    Article  CAS  Google Scholar 

  • Jahn, R. (1986). A study of Gomphonema augur Ehrenberg. The structure of the frustule and its variability in clones and populations. In 8th Diatom Symposium 1984 (pp. 191–204).

  • Kaushal, S. S., Likens, G. E., Pace, M. L., Utz, R. M., Haq, S., Gorman, J., & Grese, M. (2018). Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Sciences of the United States of America, 115(4), E574–E583. https://doi.org/10.1073/pnas.1711234115

    Article  CAS  Google Scholar 

  • Kefford, B. J. (1998). Is salinity the only water quality parameter affected when saline water is disposed in rivers? International Journal of Salt Lake Research, 7(4), 285–299. https://doi.org/10.1023/A:1009023515649

    Article  Google Scholar 

  • Kefford, B. J., Hickey, G. L., Gasith, A., Ben-David, E., Dunlop, J. E., Palmer, C. G., et al. (2012). Global scale variation in the salinity sensitivity of riverine macroinvertebrates: Eastern Australia, France, Israel and South Africa. PLoS ONE, 7(5), 1–12. https://doi.org/10.1371/journal.pone.0035224

    Article  CAS  Google Scholar 

  • Kettles, N. L., Kopriva, S., & Malin, G. (2014). Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen, PloS One, 9(4), e94795. https://doi.org/10.1371/journal.pone.0094795

  • Krell, A., Funck, D., Plettner, I., John, U., & Dieckmann, G. (2007). Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Journal of Phycology, 43(4), 753–762. https://doi.org/10.1111/j.1529-8817.2007.00366.x

    Article  CAS  Google Scholar 

  • Krembs, C., & Deming, J. W. (2008). The role of exopolymers in microbial adaptation to sea ice. In Psychrophiles: from biodiversity to biotechnology (pp. 247–264). Springer.

  • Lavoie, I., Hamilton, P. B., Morin, S., Kim Tiam, S., Kahlert, M., Gonçalves, S., et al. (2017). Diatom teratologies as biomarkers of contamination: Are all deformities ecologically meaningful? Ecological Indicators, 82(June), 539–550. https://doi.org/10.1016/j.ecolind.2017.06.048

    Article  CAS  Google Scholar 

  • Lee, P. A., De Mora, S. J., Gosselin, M., Levasseur, M., Bouillon, R. C., Nozais, C., & Michel, C. (2001). Particulate dimethylsulfoxide in Arctic sea-ice algal communities: The cryoprotectant hypothesis revisited. Journal of Phycology, 37(4), 488–499. https://doi.org/10.1046/j.1529-8817.2001.037004488.x

    Article  Google Scholar 

  • Lercari, D., & Defeo, O. (2006). Large-scale diversity and abundance trends in sandy beach macrofauna along full gradients of salinity and morphodynamics. Estuarine Coastal and Shelf Science, 68, 27–35. https://doi.org/10.1016/j.ecss.2005.12.017

    Article  Google Scholar 

  • Levasseur, M., Gosselin, M., & Michaud, S. (1994). A new source of dimethylsulfide (DMS) for the arctic atmosphere: Ice diatoms. Marine Biology, 121(2), 381–387. https://doi.org/10.1007/BF00346748

    Article  CAS  Google Scholar 

  • Lewin, R. A., & Robertson, J. A. (1971). Influence of salinity on the form of Asterocytis in pure culture. Journal of Phycology, 7(3), 236–238. https://doi.org/10.1111/j.1529-8817.1971.tb01508.x

    Article  CAS  Google Scholar 

  • Liang, Y., Sun, M., Tian, C., Cao, C., & Li, Z. (2014). Effects of salinity stress on the growth and chlorophyll fluorescence of Phaeodactylum tricornutum and Chaetoceros gracilis (Bacillariophyceae). Botanica Marina, 57(6), 469–476. https://doi.org/10.1515/bot-2014-0037

    Article  CAS  Google Scholar 

  • Lozupone, C. A., & Knight, R. (2007). Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11436–11440. https://doi.org/10.1073/pnas.0611525104

    Article  CAS  Google Scholar 

  • Lu, C., & Zhang, J. (2000). Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. Journal of Experimental Botany, 51(346), 911–917. https://doi.org/10.1093/jxb/51.346.911

    Article  CAS  Google Scholar 

  • Lyon, B. R., Lee, P. A., Bennett, J. M., DiTullio, G. R., & Janech, M. G. (2011). Proteomic analysis of a sea-ice diatom: Salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway. Plant Physiology, 157(4), 1926–1941. https://doi.org/10.1104/pp.111.185025

    Article  CAS  Google Scholar 

  • Ma, J., Zhou, B., Duan, D., & Pan, K. (2019). Salinity-dependent nanostructures and composition of cell surface and its relation to Cd toxicity in an estuarine diatom. Chemosphere, 215, 807–814. https://doi.org/10.1016/j.chemosphere.2018.10.128

    Article  CAS  Google Scholar 

  • Matrai, P. A. (1997). Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea : Dimethyl sulfide and dimethylsulfoniopropionate budgets. Journal of Geophysical Research Atmospheres, 1022(C10), 22965–22980. https://doi.org/10.1029/96JC03870

    Article  Google Scholar 

  • McMillan, M., & Johansen, J. R. (1988). Changes in valve morphology of thalassiosira decipiens (Bacillariophyceae) cultured in media of four different salinities. British Phycological Journal, 23(4), 307–316. https://doi.org/10.1080/00071618800650341

    Article  Google Scholar 

  • Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161–1173. https://doi.org/10.1093/aob/mcm052

    Article  CAS  Google Scholar 

  • Morin, S., Coste, M., & Hamilton, P. B. (2008a). Scanning electron microscopy observations of deformities in small pennate diatoms exposed to high cadmium concentrations. Journal of Phycology, 44(6), 1512–1518. https://doi.org/10.1111/j.1529-8817.2008.00587.x

    Article  CAS  Google Scholar 

  • Morin, S., Duong, T. T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., et al. (2008b). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution, 151(3), 532–542. https://doi.org/10.1016/j.envpol.2007.04.023

    Article  CAS  Google Scholar 

  • Morin, S, Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Becares, E., et al. (2012). Consistency in diatom response to metal-contaminated environments. Emerging and Priority Pollutants in Rivers, 117–146. Springer. https://doi.org/10.1007/978-3-642-25722-3_5

  • Paasche, E., Johansson, S., & Evensen, D. L. (1975). An effect of osmotic pressure on the valve morphology of the diatom Skeletonema subsalsum (A. Cleve) Bethge. Phycologia, 14(4), 205–211. https://doi.org/10.2216/i0031-8884-14-4-205.1

  • Pandey, L. K. (2020). In situ assessment of metal toxicity in riverine periphytic algae as a tool for biomonitoring of fluvial ecosystems. Environmental Technology and Innovation, 18, 100675. https://doi.org/10.1016/j.eti.2020.100675

    Article  Google Scholar 

  • Pandey, L. K., Kumar, D., Yadav, A., Rai, J., & Gaur, J. P. (2014). Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecological Indicators, 36, 272–279. https://doi.org/10.1016/j.ecolind.2013.08.002

    Article  CAS  Google Scholar 

  • Piscart, C., Lecerf, A., Usseglio-Polatera, P., Moreteau, J. C., & Beisel, J. N. (2005). Biodiversity patterns along a salinity gradient: The case of net-spinning caddisflies. Biodiversity and Conservation, 14(9), 2235–2249. https://doi.org/10.1007/s10531-004-4783-9

    Article  Google Scholar 

  • Piscart, C., Moreteau, J. C., & Beisel, J. N. (2006). Monitoring changes in freshwater macroinvertebrate communities along a salinity gradient using artificial substrates. Environmental Monitoring and Assessment, 116(1–3), 529–542. https://doi.org/10.1007/s10661-006-7669-3

    Article  Google Scholar 

  • Potapova, M., & Charles, D. F. (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology, 48(8), 1311–1328. https://doi.org/10.1046/j.1365-2427.2003.01080.x

  • Rai, A. K., & Abraham, G. (1993). Salinity tolerance and growth analysis of the cyanobacterium Anabaena doliolum. Bulletin of Environmental Contamination and Toxicology, 51(5), 724–731. https://doi.org/10.1007/BF00201651

    Article  CAS  Google Scholar 

  • Riethman, H., Bullerjahn, G., Reddy, K. J., & Sherman, L. A. (1988). Regulation of cyanobacterial pigment-protein composition and organization by environmental factors. Photosynthesis Research, 18(1–2), 133–161. https://doi.org/10.1007/BF00042982

    Article  CAS  Google Scholar 

  • Saros, J. E., & Fritz, S. C. (2000). Changes in the growth rates of saline-lake diatoms in response to variation in salinity, brine type and nitrogen form. Journal of Plankton Research, 22(6), 1071–1083. https://doi.org/10.1093/plankt/22.6.1071

    Article  Google Scholar 

  • Schmid, A. M. M. (1979). Influence of environmental factors on the development of the valve in diatoms. Protoplasma, 99(1–2), 99–115. https://doi.org/10.1007/BF01274072

    Article  Google Scholar 

  • Schröder, M., Sondermann, M., Sures, B., & Hering, D. (2015). Effects of salinity gradients on benthic invertebrate and diatom communities in a German lowland river. Ecological Indicators, 57, 236–248. https://doi.org/10.1016/j.ecolind.2015.04.038

    Article  Google Scholar 

  • Schultz, M. E. (1971). Salinity-related polymorphism in the brackish-water diatom Cyclotella cryptica. Canadian Journal of Botany, 49(8), 1285–1289. https://doi.org/10.1139/b71-182

    Article  Google Scholar 

  • Schulz, C.-J. (2016). How does salinisation running waters affect aquatic communities? Answers from a case study. Proceedings IMWA, 144–150.

  • Shetty, P., Gitau, M. M., & Mar, G. (2019). Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells, 8(12), 1–16. https://doi.org/10.3390/cells8121657

    Article  CAS  Google Scholar 

  • Steffen, W., Grinevald, J., Crutzen, P., & Mcneill, J. (2011). The anthropocene: Conceptual and historical perspectives. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 369(1938), 842–867. https://doi.org/10.1098/rsta.2010.0327

    Article  Google Scholar 

  • Talebi, A. F., Tabatabaei, M., Mohtashami, S. K., Tohidfar, M., & Moradi, F. (2013). Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Notulae Scientia Biologicae, 5(3), 309–315. https://doi.org/10.15835/nsb539114

  • Trevena, A. J., Jones, G. B., Wright, S. W., & Van Den Enden, R. L. (2000). Profiles of DMSP, algal pigments, nutrients and salinity in pack ice from eastern Antarctica. Journal of Sea Research, 43(3–4), 265–273. https://doi.org/10.1016/S1385-1101(00)00012-5

    Article  CAS  Google Scholar 

  • Trobajo, R., Cox, E. J., & Quintana, X. D. (2004). The effects of some environmental variables on the morphology of Nitzschia frustulum (Bacillariophyta), in relation its use as a bioindicator. Nova Hedwigia, 433–445. https://doi.org/10.1127/0029-5035/2004/0079-0433

  • Trobajo, R., Rovira, L., Mann, D. G., & Cox, E. J. (2011). Effects of salinity on growth and on valve morphology of five estuarine diatoms. Phycological Research, 59(2), 83–90. https://doi.org/10.1111/j.1440-1835.2010.00603.x

    Article  Google Scholar 

  • Trobajo Pujadas, R. (2007). Ecological analysis of periphytic diatoms in Mediterranean coastal wetlands (Empordà wetlands. ARG Gantner Verlag.

    Google Scholar 

  • Tuchman, M. L., Theriot, E., & Stoermer, E. F. (1984). Effects of low level salinity concentrations on the growth of Cyclotella meneghiniana Kütz. (Bacillariophyta). Archiv für Protistenkunde, 128(4), 319–326. https://doi.org/10.1016/S0003-9365(84)80003-2

  • Turner, S. M., Nightingale, P. D., Broadgate, W., & Liss, P. S. (1995). The distribution of dimethyl sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep-Sea Research Part II, 42(4–5), 1059–1080. https://doi.org/10.1016/0967-0645(95)00066-Y

    Article  CAS  Google Scholar 

  • Venâncio, C., Castro, B. B., Ribeiro, R., Antunes, S. C., Abrantes, N., Soares, A. M. V. M., & Lopes, I. (2019). Sensitivity of freshwater species under single and multigenerational exposure to seawater intrusion. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1764). https://doi.org/10.1098/rstb.2018.0252

  • Vendrell-puigmitja, L., Llenas, L., Proia, L., Ponsa, S., Espinosa, C., Morin, S., & Abril, M. (2021). Effects of an hypersaline effluent from an abandoned potash mine on freshwater biofilm and diatom communities. Aquatic Toxicology, 230, 105707. https://doi.org/10.1016/j.aquatox.2020.105707

  • Waterkeyn, A., Grillas, P., Vanschoenwinkel, B., & Brendonck, L. (2008). Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology, 53(9), 1808–1822. https://doi.org/10.1111/j.1365-2427.2008.02005.x

    Article  CAS  Google Scholar 

  • Wendker, S. (1990). Morphologische untersuchungen an populationen aus dem formenkreis um Nitzschia frustulum (kützing) grunow. Diatom Research, 5(1), 179–187. https://doi.org/10.1080/0269249X.1990.9705102

    Article  Google Scholar 

  • Williams, W. D. (1999). Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs: Research and Management, 4(3–4), 85–91. https://doi.org/10.1046/j.1440-1770.1999.00089.x

    Article  Google Scholar 

  • Yang, J. R., & Duthie, H. C. (1993). Morphology and ultrastructure of teratological forms of the diatoms Stephanodiscus niagarae and S. parvus (Bacillariophyceae) from Hamilton Harbour (Lake Ontario, Canada). Twelfth International Diatom Symposium. Hydrobiologia, 269270(1), 57–66. https://doi.org/10.1007/BF00028004

Download references

Acknowledgements

The present work was financially supported by the Algerian Ministry of Higher Education and Scientific Research and the University of 20 August 1955 (Skikda, Algeria) under the university training research project (PRFU) code A16N01UN210120180002. We express our thanks to the team of the Diatom Laboratory (University of León, Spain) for their assistance during the experiment. Special thanks to Óscar Fernández and Adrián Llamazares for their precious technical help.

Funding

The present work was funded by the Algerian Ministry of Higher Education and Scientific Research and the University of 20 August 1955 (Skikda, Algeria), and it fits into the university training research project (PRFU) carrying the code A16N01UN210120180002.

Author information

Authors and Affiliations

Authors

Contributions

Faïza Noune conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft, visualization. Nadjla Chaib conceptualization, methodology, investigation, visualization, validation, formal analysis, writing—review and editing, supervision, project administration, funding acquisition. Hadjer Kaddeche conceptualization, methodology, investigation. Sabrina Dzizi methodology, investigation, validation. Sofia Metallaoui validation, writing—review and editing. Saùl Blanco conceptualization, methodology, investigation, visualization, validation, formal analysis, data curation, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Faïza Noune.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This work did not involve the direct study of humans or animals.

Consent to participate

Not applicable.

Consent for publication

All tables and figures included in the submitted paper are originated from the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noune, F., Chaib, N., Kaddeche, H. et al. Effect of salinity on valves morphology in freshwater diatoms. Environ Monit Assess 195, 159 (2023). https://doi.org/10.1007/s10661-022-10770-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10770-w

Keywords

Navigation