Skip to main content

Advertisement

Log in

Integrated drought monitoring and assessment using multi-sensor and multi-temporal earth observation datasets: a case study of two agriculture-dominated states of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the current scenario of climate change, there has been a substantial increase in the frequency and severity of drought events. Therefore, it is necessary to investigate spatio-temporal characteristics of different drought events to plan for water resource utilization. The present study aims to assess and quantify the impact of meteorological, hydrological, and agricultural drought events from 2001 to 2017 over two large states of India (i.e., Maharashtra and Madhya Pradesh) using multi-temporal earth observation data at a finer resolution of 1 km. Drought indices including Standardized Precipitation Index (SPI), Standardized Water level Index (SWI), and Vegetation Health Index (VHI) were derived from precipitation, groundwater level, vegetation indices, and land surface temperature data respectively to map the spatial extent and severity of meteorological, hydrological, and agricultural drought. Assessment of individual drought indices was carried out to understand the effect of these drought events separately on the study area. Area vulnerable with multiple droughts in the region was identified by integrating multiple drought indices to derive a composite drought map. This included the locations that are hotspots in terms of the occurrence of drought events of different types. The spatial pattern captured in the composite drought map indicates that most of the study areas are prone to drought events varying from mild to extreme severity. Madhya Pradesh is more prone to meteorological and agricultural drought events compared to hydrological drought. Maharashtra state is prone to three types of drought with agricultural drought being the dominant one. This study provides an opportunity to investigate and understand the drought phenomenon in a comprehensive manner at comparatively finer spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Most of the datasets used in the study are freely available. The downscaled precipitation dataset are available from the corresponding authors upon reasonable request.

References

  • Aadhar, S., & Mishra, V. (2017). High-resolution near real-time drought monitoring in South Asia. Scientific Data, 4(1). https://doi.org/10.1038/sdata.2017.145

  • Amrit, K., Pandey, R. P., & Mishra, S. K. (2018). Assessment of meteorological drought characteristics over Central India. Sustainable Water Resources Management, 4(4), 999–1010.

    Article  Google Scholar 

  • Bento, V., Trigo, I., Gouveia, C., & DaCamara, C. (2018). Contribution of land surface temperature (TCI) to Vegetation Health Index: A comparative study using clear sky and all-weather climate data records. Remote Sensing, 10(9), 1324. https://doi.org/10.3390/rs10091324

    Article  Google Scholar 

  • Bhere, M. S., & Regulwar, D. G. (2020) Analysis of extreme hydrological event using gravity recovery and climate experiment (GRACE), Roorkee Water Conclave, 2020.

  • Bhuiyan, C. (2004). Various drought indices for monitoring drought condition in Aravalli terrain of India. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey (pp. 12–23).

  • Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), 289–302.

    Article  Google Scholar 

  • Bisht, D. S., Sridhar, V., Mishra, A., Chatterjee, C., & Raghuwanshi, N. S. (2019). Drought characterization over India under projected climate scenario. International Journal of Climatology, 39(4), 1889–1911.

    Article  Google Scholar 

  • Chavadekar, A., & Kashid, S. S. (2016). Historical drought analysis of Maharashtra state by using SPI Index. In Techno-societal 2016, international conference on advanced technologies for societal applications (pp. 1097–1104). Springer, Cham.

  • Das, P. K., Das, R., Das, D. K., Midya, S. K., Bandyopadhyay, S., & Raj, U. (2020). Quantification of agricultural drought over Indian region: A multivariate phenology-based approach. Natural Hazards, 101(1), 255–274.

    Article  Google Scholar 

  • Didan, K. (2021). MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V061 . NASA EOSDIS Land Processes DAAC. Accessed 2022-07-27 from https://doi.org/10.5067/MODIS/MOD13A2.061

  • Directorate of Economics and Statistics. Aps.dac.gov.in. (2021). Retrieved January 21, 2021, from https://aps.dac.gov.in/APY/Index.htm

  • European Commission - Joint Research Centre. (2019). Drought in India – June 2019. European Commission - Joint Research Centre, pp 1–17. https://geographyandyou.com/droughts-in-india/ Accessed 26 January 2021.

  • Guhathakurta, P., Menon, P., Inkane, P. M., Krishnan, U., & Sable, S. T. (2017). Trends and variability of meteorological drought over the districts of India using standardized precipitation index. Journal of Earth System Science, 126(8), 1–18.

    Article  Google Scholar 

  • Huang, S., Huang, Q., Leng, G., & Liu, S. (2016). A nonparametric multivariate standardized drought index for characterizing socioeconomic drought: A case study in the Heihe River Basin. Journal of Hydrology, 542, 875–883.

    Article  Google Scholar 

  • Jiao, W., Tian, C., Chang, Q., Novick, K., & Wang, L. (2019). A new multi-sensor integrated index for drought monitoring. Agricultural and Forest Meteorology, 268, 74–85.

    Article  Google Scholar 

  • Kang, H., & Sridhar, V. (2017). Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia. Journal of Hydrology: Regional Studies, 12, 253–272.

    CAS  Google Scholar 

  • Kelkar, S. M., Kulkarni, A., & Rao, K. K. (2020). Impact of climate variability and change on crop production in Maharashtra, India. Current Science, 118(8), 1235–1245.

    Article  Google Scholar 

  • Khetwani, S., & Singh, R. B. (2018). Assessment of hydrological drought in Marathwada Region: A spatio-temporal analysis. Journal of Geography, Environment and Earth Science International, 17(1), 1–10

  • Kogan, F. (2002). World droughts in the new millennium from AVHRR-based vegetation health indices. Eos, Transactions American Geophysical Union, 83(48), 557–563.

    Article  Google Scholar 

  • Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91–100.

    Article  Google Scholar 

  • Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78(4), 621–636.

    Article  Google Scholar 

  • Kulkarni, S. S., Wardlow, B. D., Bayissa, Y. A., Tadesse, T., Svoboda, M. D., & Gedam, S. S. (2020). Developing a remote sensing-based combined drought indicator approach for agricultural drought monitoring over Marathwada, India. Remote Sensing, 12(13), 2091.

    Article  Google Scholar 

  • Kundu, A., Dwivedi, S., & Dutta, D. (2016). Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian Journal of Geosciences, 9(2), 1–15.

    Article  CAS  Google Scholar 

  • Ladejinsky, W. (1973). Drought in Maharashtra (Not in a Hundred Years). Economic and Political Weekly, 8(7), 383–396.

    Google Scholar 

  • Lai, C., Zhong, R., Wang, Z., Wu, X., Chen, X., Wang, P., & Lian, Y. (2019). Monitoring hydrological drought using long-term satellite-based precipitation data. Science of the Total Environment, 649, 1198–1208.

    Article  CAS  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (vol. 17, no. 22, pp. 179–183).

  • Ministry of Finance. (2020). Economic Survey 2019–2020. New Delhi, Ministry of Finance

  • Mohammad, A. H., Jung, H. C., Odeh, T., Bhuiyan, C., & Hussein, H. (2018). Understanding the impact of droughts in the Yarmouk Basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arabian Journal of Geosciences, 11(5), 1–11.

    Article  Google Scholar 

  • Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., & Gao, F. (2005). Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Transactions on Geoscience and Remote Sensing, 43(1), 144–158.

    Article  Google Scholar 

  • Murthy, C. S., Chakraborty, A., Sai, M. S., & Roy, P. S. (2011). Spatio-temporal analysis of the drought of Kharif 2009 and 2002. Current Science, 100(12), 1786–1788.

    Google Scholar 

  • Nagarajan, R. (2010). Drought assessment. Springer Science & Business Media.

  • Naresh Kumar, M., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2012). Spatiotemporal analysis of meteorological drought variability in the Indian region using standardized precipitation index. Meteorological Applications, 19(2), 256–264.

    Article  Google Scholar 

  • Nath, R., Nath, D., Li, Q., Chen, W., & Cui, X. (2017). Impact of drought on agriculture in the Indo-Gangetic Plain, India. Advances in Atmospheric Sciences, 34(3), 335–346.

    Article  Google Scholar 

  • Neeti, N., Murali, C. A., Chowdary, V. M., Rao, N. H., & Kesarwani, M. (2021). Integrated meteorological drought monitoring framework using multi-sensor and multi-temporal earth observation datasets and machine learning algorithms: A case study of central India. Journal of Hydrology, 601, 126638.

    Article  Google Scholar 

  • Palmer, W. C. (1965). Meteorological drought (vol. 30). US Department of Commerce, Weather Bureau.

  • Patel, N. R., Chopra, P., & Dadhwal, V. K. (2007). Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications: A Journal of Forecasting, Practical Applications, Training Techniques and Modelling, 14(4), 329–336.

    Article  Google Scholar 

  • Peters, A. J., Walter-Shea, E. A., Ji, L., Vina, A., Hayes, M., & Svoboda, M. D. (2002). Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering and Remote Sensing, 68(1), 71–75.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1996). Numerical Recipes in Fortran 90: Numerical recipes in Fortran 77V. 2. Numerical recipes in Fortran 90. Cambridge University Press.

  • Rhee, J., & Carbone, G. J. (2011). Estimating drought conditions for regions with limited precipitation data. Journal of Applied Meteorology and Climatology, 50(3), 548–559.

    Article  Google Scholar 

  • Rotjanakusol, T., & Laosuwan, T. (2019). Drought Evaluation with NDVI-Based Standardized Vegetation Index in Lower Northeastern Region of Thailand. Geographia Technica, 14(1), 118–130.

    Article  Google Scholar 

  • Sahoo, A. K., Sheffield, J., Pan, M., & Wood, E. F. (2015). Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sensing of Environment, 159, 181–193.

    Article  Google Scholar 

  • Sahoo, S., Swain, S., Goswami, A., Sharma, R., & Pateriya, B. (2021). Assessment of trends and multi-decadal changes in groundwater level in parts of the Malwa region, Punjab, India. Groundwater for Sustainable Development, 14, 100644.

    Article  Google Scholar 

  • Sánchez, N., González-Zamora, Á., Martínez-Fernández, J., Piles, M., & Pablos, M. (2018). Integrated remote sensing approach to global agricultural drought monitoring. Agricultural and Forest Meteorology, 259, 141–153.

    Article  Google Scholar 

  • Sharma, A., & Sen, S. (2021). Impact of drought on economy: A district level analysis of Madhya Pradesh, India. Journal of Environmental Planning and Management, 64(6), 1021–1043.

    Article  Google Scholar 

  • Sutanto, S., & Van Lanen, H. (2020). Hydrological Drought Characteristics Based on Groundwater and Runoff Across Europe. In Proceedings of the International Association of Hydrological Sciences, 383, 281–290.

    Article  Google Scholar 

  • Swain, S., Patel, P., & Nandi, S. (2017). Application of SPI, EDI and PNPI using MSWEP precipitation data over Marathwada, India. In 2017 IEEE International geoscience and remote sensing symposium (IGARSS) (pp. 5505–5507). IEEE.

  • Swain, S., Mishra, S. K., & Pandey, A. (2020). Assessment of meteorological droughts over Hoshangabad district, India. In IOP conference series: earth and environmental science (vol. 491, no. 1, p. 012012). IOP Publishing.

  • Swain, S., Mishra, S. K., & Pandey, A. (2021). A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin, India. Environmental Earth Sciences, 80(6), 1–15.

    Article  Google Scholar 

  • Swain, S., Mishra, S. K., Pandey, A., & Kalura, P. (2022). Inclusion of groundwater and socio-economic factors for assessing comprehensive drought vulnerability over Narmada River Basin, India: A geospatial approach. Applied Water Science, 12(2), 1–16.

    Article  Google Scholar 

  • Todmal, R. S. (2019). Droughts and agriculture in the semi-arid region of Maharashtra, western India. Weather, Climate, and Society, 11(4), 741–754.

    Article  Google Scholar 

  • Tripathi, M. K., Srivastava, S. C., Singh, J., Yadava, H. S., & Tomar, S. S. (2016). Analysis of rainfall and drought occurrence in districts of Madhya Pradesh. Environment & Ecology, 34(1A), 372–376.

    Google Scholar 

  • Tsakiris, G., & Vangelis, H. J. E. W. (2005). Establishing a drought index incorporating evapotranspiration. European Water, 9(10), 3–11.

    Google Scholar 

  • Udmale, P. D., Ichikawa, Y., Kiem, S., & A., & N. Panda, S. (2014). Drought impacts and adaptation strategies for agriculture and rural livelihood in the Maharashtra State of India. The Open Agriculture Journal, 8(1), 41–47.

    Article  Google Scholar 

  • Udmale, P. D., Ichikawa, Y., Nakamura, T., Shaowei, N., Ishidaira, H., & Kazama, F. (2016). Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state. Environmental Research Letters, 11(7), 074013.

    Article  Google Scholar 

  • Umran Komuscu, A. (1999). Using the SPI to analyze spatial and temporal patterns of drought in Turkey. Drought Network News, 1994–2001, 49.

    Google Scholar 

  • Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I., Stahl, K., Hannaford, J., ..., & Van Lanen, H. A. (2016). Drought in the Anthropocene. Nature Geoscience, 9(2), 89–91.

  • Wan, Z., Hook, S., & Hulley, G. (2015). MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 . NASA EOSDIS Land Processes DAAC. Accessed 2022-07-27 from https://doi.org/10.5067/MODIS/MOD11A2.006

  • Wankhede, S. S., Gandhi, N., & Armstrong, L. (2014). Role of ICTs in improving drought scenario management in India.

  • Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513.

    Article  CAS  Google Scholar 

  • Wu, D., Qu, J. J., & Hao, X. (2015). Agricultural drought monitoring using MODIS-based drought indices over the USA Corn Belt. International Journal of Remote Sensing, 36(21), 5403–5425.

    Article  Google Scholar 

  • Zhang, L., Jiao, W., Zhang, H., Huang, C., & Tong, Q. (2017a). Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sensing of Environment, 190, 96–106.

    Article  Google Scholar 

  • Zhang, X., Obringer, R., Wei, C., Chen, N., & Niyogi, D. (2017b). Droughts in India from 1981 to 2013 and implications to wheat production. Scientific Reports, 7(1), 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Neeti Neeti, V. M. Chowdary. Methodology: Neeti Neeti, V. M. Chowdary, Arun Murali CM. Formal analysis and investigation: Arun Murali CM, Mohit Kesarwani. Writing—original draft preparation: Arun Murali CM, Mohit Kesarwani. Writing—review and editing: Neeti Neeti, V. M. Chowdary. Supervision: Neeti Neeti, V. M. Chowdary.

Corresponding author

Correspondence to Neeti Neeti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

C.M, A.M., Chowdary, V.M., Kesarwani, M. et al. Integrated drought monitoring and assessment using multi-sensor and multi-temporal earth observation datasets: a case study of two agriculture-dominated states of India. Environ Monit Assess 195, 1 (2023). https://doi.org/10.1007/s10661-022-10550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10550-6

Keywords

Navigation