Skip to main content

Advertisement

Log in

Investigating the environmental impacts of coal mining using remote sensing and in situ measurements in Ruqigou Coalfield, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

China is the largest producer and consumer of coal in the world. The extraction of coal is increasing intensively to meet the needs of the ever-increasing population and industries. However, coal mining has resulted in environmental changes, including deforestation, air, water, soil, and landform deterioration. This study investigates the impact of mining on the environment in Ruqigou coalfield by utilising in situ and remote sensing data. Field data collected include temperature, gas compositions, and water samples. Multi-temporal Landsat data of 1991, 2003, and 2019 were used in monitoring the impact of mining on different land covers, especially vegetation. A supervised classification was performed to assess the changes in land cover. In order to track the changes in vegetation, normalised difference vegetation index (NDVI) was employed. To study the changes in coal fire areas, thermal anomalies were extracted from the thermal infrared data using a dynamic thresholding technique. The results of in situ analyses show that water quality is unfit for domestic, industrial, and agricultural use. All the gas sampling sites emit noxious gases such as CO2, CO, NO2 and degrade the local air quality. The classified maps and vegetation indices show a significant decrease in vegetation. The thermal anomalies show an increase in fire areas over the years. Thus, it could be concluded that the conjunctive use of field-based measurements and remote sensing data can be a powerful tool for gaining a comprehensive understanding of the environmental impacts associated with large-scale mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

All the data has been included in the manuscript.

Code availability

Not applicable.

References

  • Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper, 964.

  • Andres, R. J., & Rose, W. I. (1995). Description of thermal anomalies on two active Guatemalan volcanoes using Landsat Thematic Mapper imagery. Photogrammetric Engineering & Remote Sensing, 61, 775–778.

    Google Scholar 

  • Bian, Z., Inyang, H. I., Daniels, J. L., Otto, F., & Struthers, S. (2010). Environmental issues from coal mining and their solutions. Mining Science and Technology, 20, 215–223.

    Google Scholar 

  • Biswal, S. S., & Gorai, A. K. (2020). Change detection analysis in coverage area of coal fire from 2009 to 2019 in Jharia Coalfield using remote sensing data. International Journal of Remote Sensing, 41, 9545–9564.

    Article  Google Scholar 

  • Boser, B. E., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory, Jul 27–29; Pittsburgh Pennsylvania USA, ACM Press. p 144–152.

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903.

    Article  Google Scholar 

  • Chatterjee, R. S. (2006). Coal fire mapping from satellite thermal IR data – A case example in Jharia Coalfield, Jharkhand, India. ISPRS Journal of Photogrammetry and Remote Sensing, 60, 113–119.

    Article  Google Scholar 

  • Chatterjee, R. S., Lakhera, R. C., & Dadhwal, V. K. (2010). InSAR coherence and phase information for mapping environmental indicators of opencast coal mining: A case study in Jharia Coalfield, Jharkhand, India. Canadian Journal of Remote Sensing, 36, 361–373.

    Article  Google Scholar 

  • Chatterjee, R. S., Singh, N., Thapa, S., Sharma, D., & Kumar, D. (2017). Retrieval of land surface temperature (LST) from Landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. International Journal of Applied Earth Observation and Geoinformation, 58, 264–277.

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Article  Google Scholar 

  • Eloff, C. (2018). Satellite based synthetic aperture radar and optical spatial-temporal information as aid for operational and environmental mine monitoring, University of South Africa, Pretoria. Retrieved May 28, 2022, from http://hdl.handle.net/10500/24795

  • Fiehn, A., Kostinek, J., Eckl, M., Klausner, T., Gałkowski, M., Chen, J., Gerbig, C., Rockman, T., Maazallahi, H., Schmidt, M., et al. (2020). Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach. Atmospheric Chemistry and Physics, 20, 12675–12695.

    Article  CAS  Google Scholar 

  • Finkelman, R. B., & Tian, L. (2018). The health impacts of coal use in China. International Geologiy Review, 60(5–6), 579–589.

    Article  Google Scholar 

  • Francis, P. W., & de Silva, S. L. (1989). Application of the Landsat Thematic Mapper to the identification of potentially active volcanoes in the Central Andes. Remote Sensing of Environment, 28, 245–255.

    Article  Google Scholar 

  • Gangopadhyay, P. K., Lahiri-Dutt, K., & Saha, K. (2006). Application of remote sensing to identify coalfires in the Raniganj coalbelt, India. International Journal of Applied Earth Observation and Geoinformation, 8, 188–195.

    Article  Google Scholar 

  • Gautam, S., Prasad, N., Patra, A. K., Prusty, B. K., Singh, P., Pipal, A. S., & Saini, R. (2016). Characterisation of PM2.5 generated from opencast coal mining operations: A case study of Sonepur Bazari opencast project of India. Environmental Technology and Innovation, 6, 1–10.

    Article  Google Scholar 

  • Gielisch, H., & Kropp, C. (2017). Coal fires a major source of greenhouse gases- A forgotten problem. Environmental Risk Assessment and Remediation, 2(1), 5–8.

    Google Scholar 

  • Guha, A., Kumar, K. V., & Kamaraju, M. V. V. (2008). A satellite-based study of coal fires and opencast mining activity in Raniganj coalfield, West Bengal. Current Science, 95, 1603–1607.

    Google Scholar 

  • Guha, A., & Kumar, K. V. (2012). Structural controls on coal fire distributions — Remote sensing based investigation in the Raniganj coalfield, West Bengal. Journal of the Geological Society of India, 79, 467–475.

    Article  Google Scholar 

  • Guo, W., Guo, M., Tan, Y., Bai, E., & Zhao, G. (2019). Sustainable development of resources and the environment: Mining-induced eco-geological environmental damage and mitigation measures—A case study in the Henan coal mining area. China. Sustainability, 11, 4366.

    Article  CAS  Google Scholar 

  • Habib, M. D. A., & Khan, R. (2021). Environmental impacts of coal-mining and coal-fired power-plant activities in a developing country with global context. In: Shit PK. et al. editors. Spatial Modeling and Assessment of Environmental Contaminants, Environmental Challenges and Solutions. Springer Nature Switzerland, p 421–493.

  • Health Canada. (2020). Guidelines for Canadian Drinking Water Quality—Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario. Retrieved Jun 15, 2021, from https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/summary-table-EN-2020-02-11.pdf

  • Hsu, C. W., Chang, C. C., & Lin, C. J. L. (2016). A practical guide to support vector classification. Retrieved June 15, 2021, from https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749.

    Article  Google Scholar 

  • Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  • Huo, H., Jiang, X., Song, X., Li, Z.-L., Ni, Z., & Gao, C. (2014). Detection of coal fire dynamics and propagation direction from multi-temporal nighttime Landsat SWIR and TIR data: A case study on the Rujigou coalfield, Northwest (NW) China. Remote Sensing, 6, 1234–1259.

    Article  Google Scholar 

  • Jackson, R. D., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine, 11, 185–200.

    Article  Google Scholar 

  • Kuenzer, C., Bachmann, M., Mueller, A., Lieckfeld, L., & Wagner, W. (2008). Partial unmixing as a tool for single surface class detection and time series analysis. International Journal of Remote Sensing, 29, 3233–3255.

    Article  Google Scholar 

  • Kuenzer, C., Strunz, G., Voigt, S., & Wagner, W. (2004). Multitemporal landcover investigations in an arid mining environment: Coal fire areas in northern China. Proceedings of the EARSeL Special Interest Group conference on land use and land cover, May; Dubrovnik, Croatia.

  • Kuenzer, C., Zhang, J., Li, J., Voigt, S., Mehl, H., & WagnerW. (2007a). Detecting unknown coal fires: Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. International Journal of Remote Sensing, 28, 4561–4585.

    Article  Google Scholar 

  • Kuenzer, C., Zhang, J., Sun, Y., Jia, Y., & Dech, S. (2012). Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities. International Journal of Coal Geology, 102, 75–86.

    Article  CAS  Google Scholar 

  • Kuenzer, C., Zhang, J., Tetzlaff, A., van Dijk, P., Voigt, S., Mehl, H., & Wagner, W. (2007b). Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Applied Geography, 27, 42–62.

    Article  Google Scholar 

  • Lahiri-Dutt, K., & Gangopadhyay, P. K. (2007). Subsurface coal fires in the Raniganj coalbelt: Investigating their causes and assessing human impacts. Resource Energy and Development, 4, 71–87.

    Article  Google Scholar 

  • Li, F., Li, X., Hou, L., & Shao, A. (2018). Impact of the coal mining on the spatial distribution of potentially toxic metals in farmland tillage soil. Science and Reports, 8, 14925.

    Article  Google Scholar 

  • Li, J., Fu, P., Mao, Y., Saini, V., & Sokol, E. (2020). A parametric study on the inception and evolution of underground coal fires based on a lab-scale experimental setup. Fire Technology, 56, 1039–1057.

    Article  Google Scholar 

  • Li, J., Yang, Y., Li, J., Mao, Y., Saini, V., & Kokh, S. (2022). A TGA–DSC-based study on macroscopic behaviors of coal–oxygen reactions in context of underground coal fires. Journal of Thermal Analysis and Calorimetry 147: 3185-3194. https://doi.org/10.1007/s10973-021-10671-z

    Article  Google Scholar 

  • Li, Z.-L., & Becker, F. (1993). Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sensing of Environment, 43, 67–85.

    Article  Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote sensing and image interpretation (7th ed.). Wiley.

    Google Scholar 

  • Martha, T. R., Guha, A., Kumar, K. V., Kamaraju, M. V. V., & Raju, E. V. R. (2010). Recent coal fire and land use status of Jharia coalfield, India from satellite data. International Journal of Remote Sensing, 31(12), 3243–3262.

    Article  Google Scholar 

  • Mishra, R. K., Pandey, J. K., Pandey, J., Kumar, S., & Roy, P. N. S. (2020). Detection and analysis of coal fire in Jharia coalfield (JCF) using Landsat remote sensing data. Journal of the Indian Society of Remote Sensing, 48(2), 181–195.

    Article  Google Scholar 

  • McPherson, M. J. (1993). Subsurface fires and explosions, subsurface ventilation and environment engineering. Chapman & Hall Publication.

    Book  Google Scholar 

  • Mitchell, D. W. (1990). Mine Fires. Chicago(IL): Maclean Hunter.

  • Mondal, S., Singh, G., & Jain, M. K. (2020). Spatio-temporal variation of air pollutants around the coal mining areas of Jharia Coalfield. India. Environ Monit Assess, 192(6), 405.

    Article  CAS  Google Scholar 

  • Mujawdiya, R., Chatterjee, R. S., & Kumar, D. (2020). MODIS land surface temperature time series decomposition for detecting and characterising temporal intensity variations of coal fire induced thermal anomalies in Jharia coalfield. Geocarto International. https://doi.org/10.1080/10106049.2020.1818853

    Book  Google Scholar 

  • Ohlemiller, T. J. (2002). Smouldering combustion. In: DiNenno PJ, Drysdale D, Beyler CL, Walton WD, editors. SFPE handbook of fire protection engineering, 3rd ed. Massachusetts: National Fire Protection Association Inc.; p 2.200–2.210.

  • Pande, H., Garg, R. D., Sen, A. K., & Prakash, A. (2015). Impact of mining activities on land use land cover in the Jharia coalfield, India. In G. B. Stracher, A. Prakash, & E. V. Sokol (Eds.), Coal and peat fires: A global perspective volume 3: Case Studies – Coal Fires (pp. 263–279). Elsevier.

    Google Scholar 

  • Pandey, J., Kumar, D., Mishra, R. K., Mohalik, N. K., Khalkho, A., & Singh, V. K. (2013). Application of thermography technique for assessment and monitoring of coal mine fire: A special reference to Jharia coalfield, Jharkhand, India. International Journal of Advances Remote Sensing GIS, 2(1), 138–147 (article ID-93).

  • Pandey, J., Kumar, D., Panigrahi, D. C., & Singh, V. K. (2017). Temporal transition analysis of coal mine fire of Jharia coalfield, India, using Landsat satellite imageries. Environment and Earth Science, 76(12), 1–13.

    Article  Google Scholar 

  • Pandey, B., Mukherjee, A., Agrawal, M., & Singh, S. (2019). Assessment of seasonal and site-specific variations in soil physical, chemical and biological properties around opencast coal mines. Pedosphere, 29, 642–655.

    Article  CAS  Google Scholar 

  • Paull, D., Banks, G., Ballard, C., & Gillieson, D. (2006). Monitoring the environmental impact of mining in remote locations through remotely sensed data. Geocarto International, 21, 33–42.

    Article  Google Scholar 

  • Pohl, C. (1999). Tools and methods for fusion of images of different spatial resolution. Int. Arch. Photogramm. Remote Sens. 32, Part 7–4–3, W6, Jun 3–4; Valladolid, Spain. p 76–82.

  • Prakash, A., Gupta, R. P., & Saraf, A. K. (1997). A Landsat TM based comparative study of surface and subsurface fires in the Jharia Coalfield, India. International Journal of Remote Sensing, 18, 2463–2469.

    Article  Google Scholar 

  • Prakash, A., & Gupta, R. P. (1999). Surface fires in Jharia Coalfield, India – Their distribution and estimation of area and temperature from TM data. International Journal of Remote Sensing, 20, 1935–1946.

    Article  Google Scholar 

  • Prakash, A., & Gens, R. (2010). Remote sensing of coal fires. In: Stracher GB, Prakash A, Sokol EV, editors. Coal and peat fires: a global perspective, Vol. 1, Coal – combustion and geology. Oxford: Elsevier; p 231–252.

  • Prakash, A., & Vekerdy, Z. (2004). Design and implementation of a dedicated prototype GIS for coal fire investigations in North China: Challenges met and lessons learnt. International Journal of Coal Geology, 59, 107–119.

    Article  CAS  Google Scholar 

  • Prakash, A., Saraf, A. K., Gupta, R. P., Dutta, M., & Sundaram, R. M. (1995). Surface thermal anomalies associated with underground fires in Jharia Coal Mine, India. International Journal of Remote Sensing, 16, 2105–2109.

    Article  Google Scholar 

  • Prakash, A., Fielding, E. J., Gens, R., van Genderen, J. L., & Evans, D. L. (2001). Data fusion for investigating land subsidence and coal fire hazards in a coal mining area. International Journal of Remote Sensing, 22, 921–932.

    Article  Google Scholar 

  • Prakash, A., Gens, R., & Vekerdy, Z. (1999). Monitoring coal fires using multi-temporal night-time thermal images in a coalfield in north–west China. International Journal of Remote Sensing, 20, 2883–2888.

    Article  Google Scholar 

  • Prathap, A., & Chakraborty, S. (2020). Assessment of surface water quality around opencast coal mines for sustainable utilisation potentials: A case study in Jharkhand, India. Environment, Development and Sustainability, 22, 3179–3205.

    Article  Google Scholar 

  • Rahmanian, N., Ali, S. H. B., Homayoonfard, M., Ali, N. J., Rehan, M., Sadef, Y., & Nizami, A. S. (2015). Analysis of physiochemical parameters to evaluate the drinking water quality in the state of Perak. Malaysia. Journal of Chemistry Article ID, 716125, 10.

    Google Scholar 

  • Rai, A. K., Paul, B., & Singh, G. (2010). A study on the bulk density and its effect on the growth of selected grasses in coal mine overburden dumps, Jharkhand, India. International Journal of Environmental Sciences, 1, 677–684.

    CAS  Google Scholar 

  • Rai, A. K., Paul, B., & Singh, G. (2011). A study on physico-chemical properties of overburden dump materials from selected coal mining areas of Jharia coalfields, Jharkhand, India. International Journal of Environmental Sciences, 1, 1350–1360.

    CAS  Google Scholar 

  • Ray SK, Singh, R. P., Sahay, N., & Varma, N. K. (2004). Assessing the status of sealed fire in underground coal mines. Journal of Scientific and Industrial Research, 63, 579–591.

  • Reddy, C. S. S., Bhattacharya, A., & Srivastava, S. K. (1993). Night-time TM short wavelength infrared data analysis of Barren Island Volcano, South Andaman, India. International Journal of Remote Sensing, 14, 783–787.

    Article  Google Scholar 

  • Reddy, C. S. S., Srivastava, S. K., & Bhattacharya, A. (1992). Use of short wavelength infrared data for detection and monitoring of high temperature related geoenvironmental features. Proceedings of ICORG-92, Remote Sensing Applications and Geographic Information Systems: Recent Trends, Hyderabad, India February 1992, Tata-McGraw Hill, pp 216- 220.

  • Rothery, D. A., Francis, P. W., & Wood, C. A. (1988). Volcano monitoring using short wavelength infrared data from satellite. Journal of Geophysical Research, 93, 7993–8008.

    Article  Google Scholar 

  • Rosema, A., Guan, H., Veld, H., Vekerdy, Z., Ten Katen, A., & Prakash, A. (1999). Manual of coal fire detection and monitoring. Report of the project “Development and implementation of a coal fire monitoring and fighting system in China” (245pp). Published by the Netherlands Institute of Applied Geoscience (TNO) as report NITG 99–221-C, ISBN:90–6743–640–2.

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the 3rd ERTS Symposium, NASA SP-351 I: 309–317.

  • Roy, P., Guha, A., & Kumar, K. V. (2015). Structural control on occurrence and dynamics of coalmine fires in Jharia Coalfield: A remote sensing based analysis. Journal of the Indian Society of Remote Sensing, 43, 779–786.

    Article  Google Scholar 

  • Saraf, A. K., Prakash, A., Sengupta, S., & Gupta, R. P. (1995). Landsat TM data for estimating ground temperature and depth of subsurface coal fire in Jharia Coal Field, India. International Journal of Remote Sensing, 16, 2111–2124.

    Article  Google Scholar 

  • Sader, S. A., & Winne, J. C. (1992). RGB-NDVI colour composites for visualising forest change dynamics. International Journal of Remote Sensing, 13, 3055–3067.

    Article  Google Scholar 

  • Saini, V., Gupta, R. P., & Arora, M. K. (2015a). Environmental issues of coal mining - A case study of Jharia coalfield India. Special Publication of Journal of Engineering Geology. Proceedings of the International Conference on Engineering Geology in New Millennium, Oct 27–29; New Delhi, India. p 989–998.

  • Saini, V., Gupta, R. P., & Arora, M. K. (2015b). Spatio-temporal pattern of eco-environmental parameters in Jharia coalfield, India. In: Michel U, Schulz K, Ehlers M, Nikolakopoulos KG, Civco D, editors. Proceedings of SPIE 9644, Earth Resources and Environmental Remote Sensing/GIS Applications VI, 96441H Sep 21–24; Toulouse, France, 96441H.

  • Saini, V., Gupta, R. P., & Arora, M. K. (2016a). Environmental impact studies in coalfields in India- A case study from Jharia Coal-field. Renewable Sustainable Energy Rev, 53, 1222–1239.

    Article  Google Scholar 

  • Saini, V., Arora, M. K., & Gupta, R. P. (2016b). Relationship between surface temperature and SAVI using Landsat data in a coal mining area in India. In: Khanbilvardi R, Ganju A, Rajawat AS, Chen JM, editors. Proceedings of SPIE Asia Pacific Remote Sensing 9877, Land Surface and Cryosphere Remote Sensing III, 987711, Apr 4–7; New Delhi, India: SPIE. 987711.

  • Saini, V., Arora, M. K., & Gupta, R. P. (2017). Assessment of surface coal mining impacts using Landsat time series data. Proceedings of the 38th Asian Conference on Remote Sensing (ACRS-2017), Oct 23–27; New Delhi, India.

  • Saini, V., Gupta, R. P., & Arora, M. K. (2018a). Environmental monitoring in the Jharia coalfield, India: Vegetation indices and surface temperature measurements. In G. B. Stracher (Ed.), Coal and Peat Fires: A Global Perspective Volume 5: Case Studies – Advances in Field and Laboratory Research (pp. 359–385). Elsevier.

    Google Scholar 

  • Saini, V. (2018b). Impact of coal mining and mine fires on the local environment in Jharia coalfield. Jharkhand. Everyman’s Science LIII, 1, 18–22.

    Google Scholar 

  • Sarma, K., & Barik, S. K. (2011). Coal mining impact on vegetation of the Nokrek Biosphere Reserve, Meghalaya. India. Biodiversity, 12(3), 154–164.

    Article  Google Scholar 

  • Saulov, D., Klimenko, A. Y., & Torero, J. L. (2017). Underground fire prospective technologies. In: Blinderman MS, Klimenko AY, editors. Underground coal gasification and combustion. Elsevier: Kidlington, Oxford: United Kingdom, p 583–599.

  • Simmons, J. A., Currie, W. S., Eshleman, K. N., Kuers, K., Monteleone, S., Negley, T. L., Pohlad, B. R., & Thomas, C. L. (2008). Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecological Applications, 18, 104–118.

    Article  Google Scholar 

  • Singh, N., Kala, S., Kumar, D., Chatterjee, R. S., Panigrahi, D. C., & Chaudhary, S. K. (2018). Impact of land use dynamics on land surface temperature in Jharia coalfield. In: 2018 4th Int Conf Recent Adv Inf Technol. Dhanbad, India: IEEE; p 1–6.

  • Singh, N., Chatterjee, R. S., Kumar, D., & Panigrahi, D. C. (2021). Spatio-temporal variation and propagation direction of coal fire in Jharia Coalfield, India by satellite-based multi-temporal night-time land surface temperature imaging.International Journal of Mining Science and Technology, 31, 765–778.

  • Singh, N., Chatterjee, R. S., Kumar, D., Panigrahi, D. C., & Mujawdiya, R. (2022). Retrieval of precise land surface temperature from ASTER night-time thermal infrared data by split window algorithm for improved coal fire detection in Jharia Coalfield, India. Geocarto International, 37, 926–943.

    Article  Google Scholar 

  • Sobrino, J. A., Raissouni, N., Li, Z., & –L. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment, 75, 256–266.

    Article  Google Scholar 

  • Sobrino, J. A., Jimenez-Munoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sensing of Environment, 90, 434–440.

    Article  Google Scholar 

  • Song, Z., & Kuenzer, C. (2014). Coal fires in China over the last decade: A comprehensive review. International Journal of Coal Geology, 133, 72–99.

    Article  CAS  Google Scholar 

  • Song, Z., Kuenzer, C., Zhu, H., Zhang, Z., Jia, Y., Sun, Y., & Zhang, J. (2015). Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat-8 remote sensing data. International Journal of Coal Geology, 141–142, 91–102.

  • Song, W., Song, W., Gu, H., & Li, F. (2020). Progress in the remote sensing monitoring of the ecological environment in mining areas. International Journal of Environmental Research and Public Health, 17, 1846.

    Article  Google Scholar 

  • Statistical Review of World Energy (SRWE) 69th Edition. (2020). Retrieved May 18, 2021, from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.

  • Stracher, G. B., & Taylor, T. P. (2004). Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. In: Stracher GB editor. Coal Fires Burning Around the World: A Global Catastrophe. International Journal of Coal Geology, 59, 7–17.

  • Talling, J. F., & Talling, I. B. (1965). The chemical composition of African lake waters. Int Rev Hydrobio., 50, 421–463.

    Article  Google Scholar 

  • Thakur, P., editor. (2019). Advanced Mine Ventilation. [place unknown]: Woodhead Publishing. https://doi.org/10.1016/C2014-0-04167-6

  • Tiwary, R. K. (2001). Environmental impact of coal mining on water regime and its management.Water Air Soil Pollution, 132, 185–199.

  • Toren, T., & Unal, E. (2001). Assessment of open pit coal mining impacts using remote sensing: A case study from Turkey. Proceedings of the 17th International Mining Congress Exhibition of Turkey, Jun 19–22; Ankara, Turkey, 461–466.

  • Verdin, J. P. (1985). Monitoring water quality conditions in a large western reservoir with Landsat imagery. Photogramm Engg Remote Sens, 51, 343–353.

    Google Scholar 

  • Vidal, A. (1991). Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data. International Journal of Remote Sensing, 12, 2449–2460.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483.

    Article  Google Scholar 

  • WHO. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization; Licence: CC BY-NC-SA 3.0 IGO.

  • Wright, I. A., McCarthy, B., Belmer, N., & Price, P. (2015). Subsidence from an underground coal mine and mine wastewater discharge causing water pollution and degradation of aquatic ecosystems. Water, Air, and Soil Pollution, 226(10), 348.

    Article  Google Scholar 

  • Wu, Q., Liu, K., Song, C., Wang, J., Ke, L., Ma, R., Zhang, W., Pan, H., & Deng, X. (2018). Remote sensing detection of vegetation and landform damages by coal mining on the Tibetan Plateau. Sustainability, 10, 3851.

    Article  Google Scholar 

  • Wu, Q., Song, C., Liu, K., & Ke, L. (2020). Integration of TanDEM-X and SRTM DEMs and spectral imagery to improve the large-scale detection of opencast mining areas. Remote Sensing, 12, Article ID 1451, p 20.

  • Xia, L., Zhen-qi, H., Wei-jie, L., & Xiao-yan, H. (2007). Vegetation growth monitoring under coal exploitation stress by remote sensing in the Bulianta coal mining area. Journal of China University of Mining and Technology, 17, 0479–0483.

    Article  Google Scholar 

  • Zhang, J., Wagner, W., Prakash, A., Mehl, H., & Voigt, S. (2004a). Detecting coal fires using remote sensing techniques. International Journal of Remote Sensing, 25, 3193–3220.

    Article  Google Scholar 

  • Zhang, X., Zhang, J., Kuenzer, C., Voigt, S., & Wagner, W. (2004b). Capability evaluation of 3–5 μm and 8–12.5 μm airborne thermal data for underground coal fire detection. International Journal of Remote Sensing, 25, 2245–2258.

    Article  CAS  Google Scholar 

  • Zhang, J., & Kuenzer, C. (2007). Thermal surface characteristics of coal fires 1: Results of in situ measurements. Journal of Applied Geophysics, 63, 117–134.

    Article  Google Scholar 

  • Zhang, L., Wang, J., & Feng, Y. (2018). Life cycle assessment of opencast coal mine production: A case study in Yimin mining area in China. Environmental Science and Pollution Research, 25, 8475–8486.

    Article  CAS  Google Scholar 

  • Zhou, L., Zhang, D., Wang, J., Huang, Z., & Pan, D. (2013). Mapping land subsidence related to underground coal fires in the Wuda coalfield (Northern China) using a small stack of ALOS PALSAR differential interferograms. Remote Sensing, 5, 1152–1176.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the USGS (http://earthexplorer.usgs.gov/) for providing the Landsat data used in this work free of cost through the internet. Due acknowledgment is provided to the anonymous reviewers whose comments greatly improved the manuscript.

Funding

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (NSFC Grant No. 51850410504) for carrying out the work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, V.S.; data curation, V.S., Y.Y., and J.L.; formal analysis, V.S.; funding acquisition, Jun L.; investigation, V.S., Jun L., Y.Y., and J.L.; methodology, V.S.; project administration, Jun L.; Resources, Jun L., B.W., and J.T.; software, V.S.; supervision, Jun L.; visualisation, V.S.; writing—original draft, V.S.

Corresponding author

Correspondence to Varinder Saini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, V., Li, J., Yang, Y. et al. Investigating the environmental impacts of coal mining using remote sensing and in situ measurements in Ruqigou Coalfield, China. Environ Monit Assess 194, 780 (2022). https://doi.org/10.1007/s10661-022-10461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10461-6

Keywords

Navigation