Skip to main content

Advertisement

Log in

Regional estimation of methane emissions over the peninsular India using atmospheric inverse modelling

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Accurate renditions of country-scale methane (CH4) emissions are critical in understanding the regional CH4 budget and essential for adapting national climate mitigation policies to curtail the atmospheric build-up of this greenhouse gas with high warming potential. India housing 30% of the Asian population is currently appraised as a region of CH4 source based on the inventories. To date, there have not been many reported efforts to estimate the regional CH4 emissions using direct measurements of boundary layer CH4 concentrations at multiple locations over India. Here, 2 years (2017–2018) of in situ CH4 observations from three distantly placed stations over the peninsular India is combined with state-of-the-art inversion using a Lagrangian particle dispersion model for the estimation of CH4 emission. This study updates CH4 emission over the peninsular India (land area south of 21.5°N) as ~ 10.63 Terra gram (Tg) CH4 year−1, which is 0.13 Tg CH4 year−1 higher than the existing inventory-based emission. On seasonal scale, the changes from the existing CH4 emission inventories are 0.12, 0.05, 0.055 and 0.28 Tg CH4 year−1 during winter, pre-monsoon, monsoon and post-monsoon seasons respectively. Spatial distributions of seasonal variability of posterior emissions suggest an enhancement over the eastern region of peninsular India compared to the western part. The study with observations from three stations over the peninsular India provides an update on the inventory-based estimation of CH4 emissions and urges the importance of more observations over the Indian region for the accurate estimation of fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Part of the data that support the findings of this study are available from Space Physics Laboratory, Thiruvananthapuram and National Atmospheric Research Laboratory, Thirupati, but restrictions apply to the availability of these data, which were used under licence for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Space Physics Laboratory, Thiruvananthapuram and National Atmospheric Research Laboratory, Thirupati.

References

  • Agusti-Panareda, A., Diamantakis, M., Bayona, V., Klappenbach, F., & Butz, A. (2017). Improving the inter-hemispheric gradient of total column atmospheric CO2 and CH4 in simulations with the ECMWF semi-Lagrangian atmospheric global model. Geoscientific Model Development, 10, 1–18.

    Article  CAS  Google Scholar 

  • Baer, D. S., Paul, J. B., Gupta, M., & O’Keefe, A. (2002). Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy. Applied Physics B, 75, 261–265.

    Article  CAS  Google Scholar 

  • Bey, I., Jacob, D. J., Logan, J. A., & Yantosca, R. M. (2001). Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets. Journal of Geophysical Research, 106, 23097–23113.

    Article  CAS  Google Scholar 

  • Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., & Jacob, D. J. (2017). A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geoscientific Model Development, 10, 2141–2156.

    Article  CAS  Google Scholar 

  • Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J., & Vignati, E. (2021). EDGAR v6.0 greenhouse gas emissions. European Commission, Joint Research Centre (JRC).

  • Crosson, E. (2008). A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Applied Physics B, 92, 403–408.

    Article  CAS  Google Scholar 

  • Enting, I. G. (2002). Inverse problems in atmospheric constituent transport. Cambridge University Press.

    Book  Google Scholar 

  • Etiope, G., Ciotoli, G., Schwietzke, S., & Schoell, M. (2019). Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 11, 1–22.

    Article  Google Scholar 

  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., & Fraser, P. J. (1991). Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research, 96, 13033–13065.

    Article  CAS  Google Scholar 

  • Ganesan, A. L., Rigby, M., Lunt, M. F., Parker, R. J., Boesch, H., Goulding, N., Umezawa, T., Zahn, A., Chatterjee, A., Prinn, R. G., et al. (2017). Atmospheric observations show accurate reporting and little growth in India’s methane emissions. Nature Communications, 8, 1–7.

    Article  CAS  Google Scholar 

  • Garg, A., Kankal, B., & Shukla, P. (2011). Methane emissions in India: Sub-regional and sectoral trends. Atmospheric Environment, 45, 4922–4929.

    Article  CAS  Google Scholar 

  • Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., & Grainger, C. A. (2003). Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent:2. analysis of COBRA data using a receptor-oriented framework. Journal of Geophysical Research: Atmospheres, 108.

  • Girach, I. A., Ojha, N., Nair, P. R., Pozzer, A., Tiwari, Y. K., Kumar, K. R., & Lelieveld, J. (2017). Variations in O3, CO, and CH4 over the Bay of Bengal during the summer monsoon season: Shipborne measurements and model simulations. Atmospheric Chemistry and Physics, 17, 257–275.

    Article  CAS  Google Scholar 

  • Guha, T., Tiwari, Y. K., Valsala, V., Lin, X., Ramonet, M., Mahajan, A., Datye, A., & Kumar, K. R. (2018). What controls the atmospheric methane seasonal variability over India? Atmospheric Environment, 175, 83–91.

    Article  CAS  Google Scholar 

  • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan, S., et al. (2002). Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415, 626–630.

    Article  Google Scholar 

  • Halder, S., Tiwari, Y. K., Valsala, V., Sreeush, M. G., Sijikumar, S., Janardanan, R., & Maksyutov, S. (2021). Quantification of enhancement in atmospheric CO2 background due to Indian biospheric fluxes and fossil fuel emissions. Journal of Geophysical Research: Atmospheres, 126(e2021JD034545).

  • Hausmann, P., Sussmann, R., & Smale, D. (2016). Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): Top–down estimate from ethane and methane column observations. Atmospheric Chemistry and Physics, 16, 3227–3244.

    Article  CAS  Google Scholar 

  • Jain, C. D., Singh, V., Akhil Raj, S., Madhavan, B., & Ratnam, M. V. (2021). Local emission and long-range transport impacts on the CO, CO2, and CH4 concentrations at a tropical rural site. Atmospheric Environment, 254(118397).

  • Janardanan, R., Maksyutov, S., Tsuruta, A., Wang, F., Tiwari, Y. K,, Valsala ,V., Ito, A., Yoshida, Y., Kaiser, J. W., Janssens-Maenhout, G., Arshinov, M., Sasakawa, M., Tohjima, Y., Worthy, D. E. J., Dlugokencky, E. J., Ramonet, M., Arduini, J., Lavric, J. V., Piacentino, S., & Matsunaga, T. (2020). Country-scale analysis of methane emissions with a high-resolution inverse model using GOSAT and surface observations. Remote Sensing, 12(3), 375.

  • Joseph, P. V., & Sijikumar, S. (2004). Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. Journal of Climate, 17, 1449–1458.

    Article  Google Scholar 

  • Kavitha, M., & Nair, P. R. (2016). Region-dependent seasonal pattern of methane over Indian region as observed by SCIAMACHY. Atmospheric Environment, 131, 316–325.

    Article  CAS  Google Scholar 

  • Kavitha, M., Nair, P. R., Girach, I. A., Aneesh, S., Sijikumar, S., & Renju, R. (2018). Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology”. Science of the Total Environment, 631–632, 1472–1485.

    Article  CAS  Google Scholar 

  • Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., & Zeng, G. (2013). Three decades of global methane sources and sinks. Nature Geoscience, 6, 813–823.

    Article  CAS  Google Scholar 

  • Kumar, K. R., Revadekar, J. V., & Tiwari, Y. K. (2014). AIRS retrieved CO2 and its association with climatic parameters over India during 2004–2011. The Science of the Total Environment, 476–477, 79–89.

    Article  CAS  Google Scholar 

  • Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. R., Huang, J., O’Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, P., Sweeney, C., Turnbull, J., & Wu, K. (2016). High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). Journal of Geophysical Research: Atmospheres, 121, 5213–5236.

    Article  CAS  Google Scholar 

  • Maksyutov, S., Oda, T., Saito, M., Janardanan, R., Belikov, D., Kaiser, J. W., Zhuravlev, R., Ganshin, A., Valsala, V. K., Andrews, A., Chmura, L., Dlugokencky, E., Haszpra, L., Langenfelds, R. L., Machida, T., Nakazawa, T., Ramonet, M., Sweeney, C., & Worthy, D. (2021). Technical note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM–FLEXPART coupled transport model and its adjoint. Atmospheric Chemistry and Physics, 21, 1245–1266.

    Article  CAS  Google Scholar 

  • Massart, S., Agusti-Panareda, A., Aben, I., Butz, A., Chevallier, F., Crevoisier, C., Engelen, R., Frankenberg, C., & Hasekamp, O. (2014). Assimilation of atmospheric methane products into the MACC-II system: From SCIAMACHY to TANSO and IASI. Atmospheric Chemistry and Physics, 14, 6139–6158.

    Article  CAS  Google Scholar 

  • Myhre, G., Shindell, D., Br Ãľon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing (pp. 659–740). Cambridge University Press.

    Google Scholar 

  • Nalini, K., Sijikumar, S., Valsala, V., Tiwari, Y. K., & Ramachandran, R. (2019). Designing surface CO2 monitoring network to constrain the Indian land fluxes. Atmospheric Environment, 218, 117003.

    Article  CAS  Google Scholar 

  • Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D., Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P., Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones, A. E., Levin, I., Manning, A. C., Myhre, G., & White, J. W. C. (2019). Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 33, 318–342.

    Article  CAS  Google Scholar 

  • Patra, P. K., Canadell, J. G., Houghton, R. A., Piao, S. L., Oh, N. H., Ciais, P., Manjunath, K. R., Chhabra, A., Wang, T., Bhattacharya, T., Bousquet, P., Hartman, J., Ito, A., Mayorga, E., Niwa, Y., Raymond, P. A., Sarma, S., & VVS, Lasco R,. (2013). The carbon budget of South Asia. Biogeosciences, 10(1), 513–527.

    Article  Google Scholar 

  • Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., & Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.4. Geoscientific Model Development, 12, 4955–4997.

    Article  Google Scholar 

  • Rayner, P. J., Law, R. M., Allison, C. E., Francey, R. J., Trudinger, C. M., & Pickett-Heaps, C. (2008). Interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements. Global Biogeochemical Cycles, 22.

  • Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D., O’Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J., Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., McCulloch, A., & Park, S. (2017). Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences, 114, 5373–5377.

    Article  CAS  Google Scholar 

  • Rödenbeck, C., Houweling, S., Gloor, M., & Heimann, M. (2003). CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics, 3, 1919–1964.

    Article  Google Scholar 

  • Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., & ya Chuang H, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M,. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1058.

    Article  Google Scholar 

  • Sanderson, M. G. (1996). Biomass of termites and their emissions of methane and carbon dioxide: A global database. Global Biogeochemical Cycles, 10, 543–557.

    Article  CAS  Google Scholar 

  • Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., & Zhuang, Q. (2020). The global methane budget 2000–2017. Earth System Science Data, 12, 1561–1623.

  • Schuh, A. E., Lauvaux, T., West, T. O., Denning, A. S., Davis, K. J., Miles, N., Richardson, S., Uliasz, M., Lokupitiya, E., Cooley, D., Andrews, A., & Ogle, S. (2013). Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural landscape. Global Change Biology, 19, 1424–1439.

    Article  Google Scholar 

  • Seibert, P., & Frank, A. (2004). Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmospheric Chemistry and Physics, 4, 51–63.

    Article  CAS  Google Scholar 

  • Sijikumar, S., Aneesh, S., & Rajeev, K. (2016). Multi-year model simulations of mineral dust distribution and transport over the Indian subcontinent during summer monsoon seasons. Meteorology and Atmospheric Physics, 128, 453–464.

    Article  Google Scholar 

  • Solazzo, E., Crippa, M., Guizzardi, D., Muntean, M., Choulga, M., & Janssens-Maenhout, G. (2021). Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmospheric Chemistry and Physics, 21, 5655–5683.

    Article  CAS  Google Scholar 

  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474.

    Article  CAS  Google Scholar 

  • Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O’Doherty, S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., & Yokouchi, Y. (2009). An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics, 9, 1597–1620.

    Article  CAS  Google Scholar 

  • Tans, P. P., Fung, I. Y., & Takahashi, T. (1990). Observational constrains on the global atmospheric CO2 budget. Science, 247, 1431–1438.

    Article  CAS  Google Scholar 

  • Tarantola, A. (2004). Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Thompson, R. L., & Stohl, A. (2014). FLEXINVERT: An atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid. Geoscientific Model Development, 7, 2223–2242.

    Article  Google Scholar 

  • Tiwari, Y. K., Valsala, V., Vellore, R., & Kunchala, R. K. (2013). Effectiveness of surface monitoring stations in representing regional CO2 emissions over India. Climate Research, 56, 121–129.

    Article  Google Scholar 

  • Tiwari, Y. K., Guha, T., Valsala, V., Lopez, A. S., Cuevas, C., Fernandez, R. P., & Mahajan, A. S. (2020). Understanding atmospheric methane sub-seasonal variability over India. Atmospheric Environment, 223, 117206.

    Article  CAS  Google Scholar 

  • Turner, A. J., Frankenberg, C., Wennberg, P. O., & Jacob, D. J. (2017). Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proceedings of the National Academy of Sciences, 114, 5367–5372.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FLEXPART model is obtained from https://www.flexpart.eu/, NCEP-CFSR data from https://rda.ucar.edu/, anthropogenic CH4 fluxes from EDGAR of European Commission and CAMS data is from https://ads.atmosphere.copernicus.eu/. AR is supported by ISRO-Research Fellowship program. We thank anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sijikumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, A., Sijikumar, S., Valsala, V. et al. Regional estimation of methane emissions over the peninsular India using atmospheric inverse modelling. Environ Monit Assess 194, 647 (2022). https://doi.org/10.1007/s10661-022-10323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10323-1

Keywords

Navigation