Skip to main content

Advertisement

Log in

Suitable habitat modelling using GIS for orchids in the Black Sea Region (North of Turkey)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Orchids are under continuous threat from many factors, especially human-sourced. Estimating the emerging threat factors linked to habitat losses is very important to understand the effects on biodiversity and to design protection strategies and protected areas. Field assessments and modelling were performed with the aim of determining areas where orchids may spread and to reveal priority areas to create a protection plan. Additionally, the aim was to contribute to development of protection strategies for taxa under threat. This study was performed in the Black Sea region located in the north of Turkey. A total of 40 taxa belonging to 15 Orchidaceae genera were collected. The field assessment process used topographic parameters and threat factors. Habitats where orchids are most commonly distributed comprise open areas, meadows, pastures, and forests. Additionally, the density of orchids was determined to be highest at altitudes from 400 to 1600 m. The highest risk factors for taxa in the region include grazing and trampling. Based on these results, suitable habitats were modelled and mapped according to the observed habitat requirements. The determined suitable habitats will represent the preliminary targets for ex situ protection programs where required. The maps revealed here are important for labeling areas with an estimated orchid density and for protection of these areas if necessary. Our field observations were compatible with the obtained maps. Additionally, we consider these maps to be very important in terms of determining areas where taxa will be spread in preliminary field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal, S., & Zettler, L. W. (2010). Reintroduction of an endangered terrestrial orchid, Dactylorhiza hatagirea (D. Don) Soo, assisted by symbiotic seed germination: First report from the Indian subcontinent. Nature and Science, 8(10), 139–145.

    Google Scholar 

  • Baral, H., Keenan, R. J., Sharma, S. K., Stork, N. E., & Kasel, S. (2014). Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecological Indicators, 36, 552–562.

    Article  Google Scholar 

  • Barbaro, L., Dutoit, T., & Grossi, J. L. (2003). Influence des facteurs agro-ecologiques sur les assemblages d’orchidees dans les pelouses calcicoles du Vercors (Prealpes, France) [Influence of agro-ecological factors on orchid assemblages in the calcareous grasslands of the Vercors (Alps, France)]. Botanica Helvetica, 113, 63–79.

    Google Scholar 

  • Blinova, I. V. (2008). Populations of orchids at the northern limit of their distribution (Murmansk Oblast): Effect of climate. Russian Journal of Ecology, 39, 26–33.

    Article  Google Scholar 

  • Bowles, M., Zettler, L., Bell, T., & Kelsey, P. (2005). Relationships between soil characteristics, distribution and restoration potential of the federal threatened eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindl. American Midland Naturalist, 154, 273–286.

    Article  Google Scholar 

  • Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453–460.

    Article  Google Scholar 

  • Chen, Y. K., Yang, X. B., Yang, Q., Li, D. H., Long, W. X., & Luo, W. Q. (2014). Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island. China. Plos One, 9(5), e97751.

    Article  Google Scholar 

  • Crain, B. J., & Fernández, M. (2020). Biogeographical analyses to facilitate targeted conservation of orchid diversity hotspots in Costa Rica. Diversity and Distributions, 26(7), 853–866.

    Article  Google Scholar 

  • Crain, B. J., & Tremblay, R. L. (2012). Update on the distribution of Lepanthes caritensis, a rare Puerto Rican endemic orchid. Endanger Species Res, 18(1), 89–94.

    Article  Google Scholar 

  • Crain, B. J., & Tremblay, R. L. (2014). Do richness and rarity hotspots really matter for orchid conservation in light of anticipated habitat loss? Diversity and Distributions, 20(6), 652–662.

    Article  Google Scholar 

  • Currie, D. J. (2001). Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4, 216–225.

    Article  Google Scholar 

  • Currie, D. J., Mittelbach, G. G., Cornell, H. V., Field, R., Guegan, J. F., Hawkins, B. A., Kaufman, D. M., Kerr, J. T., Oberdorff, T., O’Brien, E. M., & Turner, J. R. G. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121–1134.

    Article  Google Scholar 

  • Djordjević, V., Tsiftsis, S., Lakušić, D., Jovanović, S., Jakovljević, K., & Stevanović, V. (2020). Patterns of distribution, abundance and composition of forest terrestrial orchids. Biodiversity and Conservation, 29(14), 4111–4134.

    Article  Google Scholar 

  • Djordjević, V., Tsiftsis, S., Lakušić, D., Jovanović, S., & Stevanović, V. (2016). Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. System Biodivers, 14(4), 355–370.

    Article  Google Scholar 

  • Evans, A., Janssens, S., & Jacquemyn, H. (2020). Impact of climate change on the distribution of four closely related Orchis (Orchidaceae) species. Diversity, 12(8), 312.

    Article  Google Scholar 

  • Evans, M. C., Watson, J. E., Fuller, R. A., Venter, O., Bennett, S. C., Marsack, P. R., & Possingham, H. P. (2011). The spatial distribution of threats to species in Australia. BioScience, 61(4), 281–289.

    Article  Google Scholar 

  • Fay, M. F. (2018). Orchid conservation: How can we meet the challenges in the twenty-first century? Botanical Studies, 59(1), 16.

    Article  Google Scholar 

  • Fay, M. F., & Chase, M. W. (2009). Orchid biology: From Linnaeus via Darwin to the 21st century. Annals of Botany, 104(3), 359–364.

    Article  Google Scholar 

  • Gale, S. W., Fischer, G. A., Cribb, P. J., & Fay, M. F. (2018). Orchid conservation: Bridging the gap between science and practice. Bot J Linn, 186(4), 425–434.

    Article  Google Scholar 

  • Groves, C. R. (2003). Drafting a Conservation Blueprint. Island Press.

    Google Scholar 

  • Hagsater, E., & Dumont, V. (1996). Orchids: Status, survey and conservation action plan. IUCN.

    Google Scholar 

  • Helm, A., Hanski, I., & Pärtel, M. (2006). Slow response of plant species richness to habitat loss and fragmentation. Ecology Letters, 9(1), 72–77.

    Google Scholar 

  • Janes, J. K., Steane, D. A., & Vaillancourt, R. E. (2010). An investigation into the ecological requirements and niche partitioning of Pterostylidinae (Orchidaceae) species. Australian Journal of Botany, 58(5), 335–341.

    Article  Google Scholar 

  • Jones, D. L. (2006). A complete guide to native orchids of Australia, including the island territories (Reed New Holland: Sydney, NSW, Australia).

  • Kerr, J. T., Sugar, A., & Packer, L. (2000). Indicator taxa, rapid biodiversity assessment, and nestedness in an endangered ecosystem. Conservation Biology, 14, 1726–1734.

    Article  Google Scholar 

  • Kull, T., & Hutchings, M. J. (2006). A comparative analysis in decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biological Conservation, 129, 31–39.

    Article  Google Scholar 

  • Li, J., Gale, S. W., Kumar, P., Zhang, J., & Fischer, G. (2018). Prioritizing the orchids of a biodiversity hotspot for conservation based on phylogenetic history and extinction risk. Bot J Linn, 186(4), 473–497.

    Article  Google Scholar 

  • Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243–253.

    Article  CAS  Google Scholar 

  • McCormick, M. K., Whigham, D. F., O’Neill, J. P., Becker, J. J., Werner, S., Rasmussen, H. N., Bruns, T. D., & Taylor, D. L. (2009). Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecological Monographs, 79, 619–635.

    Article  Google Scholar 

  • Molnár, V. A., Nagy, T., Löki, V., Süveges, K., Takács, A., Bódis, J., & Tökölyi, J. (2017). Turkish graveyards as refuges for orchids against tuber harvest. Ecology and Evolution, 7(24), 11257–11264.

    Article  Google Scholar 

  • Pellissier, L., Vittoz, P., Internicola, A. I., & Gigord, L. D. B. (2010). Generalized food-deceptive orchid species flower earlier and occur at lower altitudes than rewarding ones. J Plant Ecol, 3, 243–250.

    Article  Google Scholar 

  • Piao, S., Cui, M., Chen, A., Wang, X., Ciais, P., Liu, J., & Tang, Y. (2011). Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 151(12), 1599–1608.

    Article  Google Scholar 

  • Pillon, Y., & Chase, M. W. (2006). Taxonomic exaggeration and its effects on orchid conservation. Conservation Biology, 21(1), 263–265.

    Article  Google Scholar 

  • Pimm, S. L., & Raven, P. (2000). Extinction by numbers. Nature, 403(6772), 843–845.

    Article  CAS  Google Scholar 

  • Qin, H., Yang, Y., Dong, S., He, Q., Jia, Y., Zhao, L., et al. (2017). Threatened species list of China’s higher plants. Biodiversity Science, 25(7), 696.

    Article  Google Scholar 

  • Rabinowitz, D. (1981). Seven forms of rarity. In H. Synge (Ed.), The biological aspects of rare plant conservation. New York.

  • Reiter, N., Whitfield, J., Pollard, G., Bedggood, W., Argall, M., Dixon, K., et al. (2016). Orchid re-introductions: An evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecology, 217(1), 81–95.

    Article  Google Scholar 

  • Sandal, G., & Söğüt, Z. (2010). Türkiye orkideleri (salepler). Akdeniz Univ Ziraat Fak Derg, 23(2), 109–116.

    Google Scholar 

  • Sezik, E. E. (1984). Orkidelerimiz: Türkiye’nin orkideleri. Sandoz Kültür Yayınları.

  • Shefferson, R. P., Jacquemyn, H., Kull, T., & Hutchings, M. J. (2020). The demography of terrestrial orchids: Life history, population dynamics and conservation. Botanical Journal of the Linnean Society, 192, 315–332.

    Article  Google Scholar 

  • Silcock, J. L., Simmons, C. L., Monks, L., Dillon, R., Reiter, N., Jusaitis, M., et al. (2019). Threatened plant translocation in Australia: A review. Biological Conservation, 236, 211–222.

    Article  Google Scholar 

  • Smith-Ramírez, C., Díaz, I., Pliscoff, P., Valdovinos, C., Méndez, M. A., Larraín, J., & Samaniego, H. (2007). Distribution patterns of flora and fauna in southern Chilean Coastal rain forests: Integrating natural history and GIS. Biodiversity and Conservation, 16(9), 2627–2648.

    Article  Google Scholar 

  • Steffen, W. (2009). Australia’s biodiversity and climate change. Csiro Publishing.

  • Štípková, Z., Romportl, D., Černocká, V., & Kindlmann, P. (2017). Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. European Journal of Environmental Sciences, 7(2), 135–145.

    Article  Google Scholar 

  • Swarts, N. D., & Dixon, K. W. (2009). Terrestrial orchid conservation in the age of extinction. Annals of Botany, 104(3), 543–556.

    Article  Google Scholar 

  • Tognelli, M., & Kelt, D. (2004). Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27, 427–436.

    Article  Google Scholar 

  • Vogt-Schilb, H., Munoz, F., Richard, F., & Schatz, B. (2015). Recent declines and range changes of orchids in Western Europe (France, Belgium and Luxembourg). Biological Conservation, 190, 133–141.

    Article  Google Scholar 

  • Wraith, J., & Pickering, C. (2017). Tourism and recreation a global threat to orchids. Biodiversity and Conservation, 26, 3407–3420.

    Article  Google Scholar 

  • Wraith, J., & Pickering, C. (2019). A continental scale analysis of threats to orchids. Biological Conservation, 234, 7–17.

    Article  Google Scholar 

  • Zhang, Z., Yan, Y., Tianb, Y., Lib, J., Hea, J. S., & Tanga, Z. (2015). Distribution and conservation of orchid species richness in China. Biological Conservation, 181, 64–72.

    Article  Google Scholar 

Download references

Funding

Plant samples were collected with a project supported by Scientifc and Technological Research Council of Turkey (TUBITAK, 114Z702).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MKA, GŞ and ŞSŞ. Modeling was done by TE using GIS. The first draft of the manuscript was written by MKA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustafa Kemal Akbulut.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbulut, M.K., Süngü Şeker, Ş., Everest, T. et al. Suitable habitat modelling using GIS for orchids in the Black Sea Region (North of Turkey). Environ Monit Assess 193, 853 (2021). https://doi.org/10.1007/s10661-021-09648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09648-0

Keywords

Navigation