Skip to main content
Log in

Removal of metallic trace elements (Pb2+, Cd2+, Cu2+, and Ni2+) from aqueous solution by adsorption onto cerium oxide modified activated carbon

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The equilibrium and kinetic studies of removal of Pb2+, Cd2+, Ni2+, and Cu2+ metal ions were carried out using activated carbon prepared from palm kernel shell and doped with CeO2 (Ce/AC). The obtained material carbon was characterized by XRD which showed some crystalline traces of CeO2, SEM displaying the porous texture with spherical pores and the determination of pH of point of zero charge (pHPZC) which was found to be equal to 6. The contact time and adsorbate were thoroughly investigated. The maximum adsorption depends inversely on the hydrated metal radius. This observation was confirmed by calculating the formation energies (ΔH(M(OH)2)) of M(OH)2. The metal ionic radii were acting on calculated sorption capacity and that sorption efficiency related to ionic radii of metal was as follows: R(Ni2+) ≤ R(Cd2+) < R(Cu2+) < R(Pb2+). The texture and morphology of the material after sorption were affected by the metallic ion nature as observed by SEM. The kinetic studies showed that the rate constant (k2) of pseudo-second-order model decreased with the increase of the hydrated cations radii, while the rate constant of intraparticle diffusion increased with the increase of the ionic radii. The Freundlich isotherm model best fit the experimental sorption data for all the metallic ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aharoni, C., & Ungarish, M. (1976). Kinetics of activated chemisorption. Part 1.—The non-elovichian part of the isotherm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases72, 400–408. https://doi.org/10.1039/F19767200400

  • Alhooshani, K. R. (2019). Adsorption of chlorinated organic compounds from water with cerium oxide-activated carbon composite. Arabian Journal of Chemistry, 12(8), 2585–2596.

    Article  CAS  Google Scholar 

  • Ali, I., Dahiya, S., & Tabrez, K. H. A. N. (2012). Removal of direct red 81 dye from aqueous solution by native and citric acid modified bamboo sawdust-kinetic study and equilibrium isotherm analyses. Gazi University Journal of Science, 25(1), 59–87.

    Google Scholar 

  • Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., & Mello, C. A. D. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of Colloïd and Interface Science, 332(1), 46–53. https://doi.org/10.1016/j.jcis.2008.12.012

    Article  CAS  Google Scholar 

  • Amin, M., Alazba, A., & Shafiq, M. (2015). Adsorptive removal of reactive black 5 from wastewater using bentonite clay: Isotherms, kinetics and thermodynamics. Sustainability, 7(11), 15302–15318. https://doi.org/10.3390/su71115302

    Article  CAS  Google Scholar 

  • Atkins, P. (1970). Physical Chemistry. Oxford University Press.

    Google Scholar 

  • Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption. CRC Press.

    Book  Google Scholar 

  • Başar, C. A. (2006). Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials, 135(1–3), 232–241. https://doi.org/10.1016/j.jhazmat.2005.11.055

    Article  CAS  Google Scholar 

  • Boadu, K. O., Joel, O. F., Essumang, D. K., & Evbuomwan, B. O. (2018). Comparative studies of the physicochemical properties and heavy metals adsorption capacity of chemical activated carbon from palm kernel, coconut and groundnut shells. Journal of Applied Sciences and Environmental Management, 22(11), 1833–1839. https://doi.org/10.4314/jasem.v22i11.19

    Article  CAS  Google Scholar 

  • Budinova, T. K., Petrov, N. V., Minkova, V. N., & Gergova, K. M. (1994). Removal of metal ions from aqueous solution by activated carbons obtained from different raw materials. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 60(2), 177–182. https://doi.org/10.1002/jctb.280600210

    Article  CAS  Google Scholar 

  • Cassini, A. S., Marczak, L. D. F., & Noreña, C. P. Z. (2006). Water adsorption isotherms of texturized soy protein. Journal of Food Engineering, 77(1), 194–199. https://doi.org/10.1016/j.jfoodeng.2005.05.059

    Article  CAS  Google Scholar 

  • Chen, S. B., Ma, Y. B., Chen, L., & Xian, K. (2010). Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single and multi-metal competitive adsorption study. Geochemical Journal, 44(3), 233–239. https://doi.org/10.2343/geochemj.1.0065

    Article  CAS  Google Scholar 

  • Dąbrowski, A. (2001). Adsorption—From theory to practice. Advances in Colloid and Interface Science, 93(1–3), 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8

    Article  Google Scholar 

  • Dada, A. O., Adekola, F. A., & Odebunmi, E. O. (2017). Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chemistry, 3(1), 1351653. https://doi.org/10.1080/23312009.2017.1351653

    Article  CAS  Google Scholar 

  • Denaix, L., Lamy, I., & Bottero, J. Y. (1999). Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 158(3), 315–325. https://doi.org/10.1016/S0927-7757(99)00096-5

    Article  CAS  Google Scholar 

  • Elhussein, E. A. A., Şahin, S., & Bayazit, Ş. S. (2018). Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. Journal of Molecular Liquids, 255, 10–17.

    Article  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  • Ghalit, M., Gharibi, E., Taupin, J. D., Yousfi, E. B., & Zarrouk, A. (2015). Nutritional contribution in trace elements of bottled water in Morocco. Der Pharmacia Lettre, 7, 202–211.

    Google Scholar 

  • Gin, W. A., Jimoh, A., Abdulkareem, A. S., & Giwa, A. (2014). Production of activated carbon from watermelon peel. Int. J. Scient. Eng. Res, 5, 66–71.

    Google Scholar 

  • Goldberg, S. (2005). Equations and models describing adsorption processes in soils. Chemical Processes in Soils, 8, 489–517. https://doi.org/10.2136/sssabookser8.c10

    Article  CAS  Google Scholar 

  • Goscianska, J., Marciniak, M., & Pietrzak, R. (2015). Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal. Separation and Purification Technology, 154, 236–245. https://doi.org/10.1016/j.seppur.2015.09.042

    Article  CAS  Google Scholar 

  • Gupta, V. K., Rastogi, A., Dwivedi, M. K., & Mohan, D. (1997). Process development for the removal of zinc and cadmium from wastewater using slag—A blast furnace waste material. Separation Science and Technology, 32(17), 2883–2912. https://doi.org/10.1080/01496399708002227

    Article  CAS  Google Scholar 

  • Hamoud, H. I. (2015). Réactivité de catalyseurs à base de cérium pour l’oxydation catalytique des colorants textiles en procédé Fenton/photo Fenton (Doctoral dissertation, Université de Lorraine).

  • Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, J. M., Kingery, W. L., & Triplett, G. E. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89(11), 497–504. https://doi.org/10.1007/s00114-002-0373-4.

    Article  CAS  Google Scholar 

  • Hao, L., Huiping, D., & Jun, S. (2012). Activated carbon and cerium supported on activated carbon applied to the catalytic ozonation of polycyclic aromatic hydrocarbons. Journal of Molecular Catalysis A: Chemical, 363, 101–107. https://doi.org/10.1016/j.molcata.2012.05.022

    Article  CAS  Google Scholar 

  • Hashem, A., Badawy, S. M., Farag, S., Mohamed, L. A., Fletcher, A. J., & Taha, G. M. (2020). Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd (II) from aqueous systems. Journal of Environmental Chemical Engineering, 8(4), 103966. https://doi.org/10.1016/j.jece.2020.103966

    Article  CAS  Google Scholar 

  • Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, 9(3), 276–282. https://doi.org/10.1016/j.hbrcj.2013.08.004

    Article  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChemE, 76(4), 332–340.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Jia, Y. F., & Y. F., Xiao, B., & Thomas, K. M. (2002). Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir, 18(2), 470–478. https://doi.org/10.1021/la011161z

    Article  CAS  Google Scholar 

  • Kavand, M., Eslami, P., & Razeh, L. (2020). The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems. Journal of Water Process Engineering, 34, 101151. https://doi.org/10.1016/j.jwpe.2020.101151

    Article  Google Scholar 

  • Khan, T. A., Dahiya, S., & Ali, I. (2012). Removal of direct red 81 dye from aqueous solution by native and citric acid modified bamboo sawdust-kinetic study and equilibrium isotherm analyses. Gazi University Journal of Science25(1).

  • Ko, D. C., Cheung, C. W., Choy, K. K., Porter, J. F., & McKay, G. (2004). Sorption equilibria of metal ions on bone char. Chemosphere, 54(3), 273–281. https://doi.org/10.1016/j.chemosphere.2003.08.004

    Article  CAS  Google Scholar 

  • Kouotou, D., Blin, J., Ngomo, H. M., Ndi, J. N., Belibi, P. B., & Ketcha, J. M. (2017). Mechanisms involved in the removal of phenolic compounds from aqueous solution using activated carbons based palm kernels shells. Journal of Applicable Chemistry, 6(5), 799–807.

    CAS  Google Scholar 

  • Kouotou, D., Manga, H. N., Baçaoui, A., Yaacoubi, A., Mbadcam, J. K. (2012). Optimization of activated carbons prepared by and steam activation of oil palm shells. Journal of Chemistry, 2013 https://doi.org/10.1155/2013/654343

  • Kouotou, D., Ngomo Manga, H., Baçaoui, A., Yaacoubi, A., & Ketcha Mbadcam, J. (2013). Physicochemical activation of oil palm shells using response surface methodology: Optimization of activated carbons preparation. International Journal of Current Research, 5(3), 431–438.

    CAS  Google Scholar 

  • Kubilay, Ş, Gürkan, R., Savran, A., & Şahan, T. (2007). Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13(1), 41–51. https://doi.org/10.1007/s10450-007-9003-y

    Article  CAS  Google Scholar 

  • Lahaye, L., & Ehrburger, P. (Eds.). (2012). Fundamental issues in control of carbon gasification reactivity (Vol. 192). Springer Science & Business Media.

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  • Lee, D. H., & Moon, H. (2001). Adsorption equilibrium of heavy metals on natural zeolites. Korean Journal of Chemical Engineering, 18(2), 247–256. https://doi.org/10.1007/BF02698467

    Article  CAS  Google Scholar 

  • Lékéné, R. B. N., Nsami, J. N., Rauf, A., Kouotou, D., Belibi, P. D. B., Bhanger, M. I., & Mbadcam, J. K. (2018). Optimization conditions of the preparation of activated carbon based Egusi (Cucumeropsis mannii Naudin) seed shells for nitrate ions removal from wastewater. American Journal of Analytical Chemistry, 9(10), 439. https://doi.org/10.4236/ajac.2018.910034

    Article  CAS  Google Scholar 

  • Li, L., Ye, W., Zhang, Q., Sun, F., Lu, P., & Li, X. (2009). Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon. Journal of Hazardous Materials, 170(1), 411–416. https://doi.org/10.1016/j.jhazmat.2009.04.081

    Article  CAS  Google Scholar 

  • Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.

  • Miquel, G. (2001). Report on the effects of heavy metals on the environment and health. document No. 2979 of the National Assembly and No. 261 of the French Senate. Parliamentary Office for the Evaluation of Scientific and Technological Choices.

  • Mitic-Stojanovic, D. L., Zarubica, A., Purenovic, M., Bojic, D., Andjelkovic, T., & Bojic, A. L. (2011). Biosorptive removal of Pb 2+, Cd 2+ and Zn 2+ ions from water by agenaria vulgaris shell. Water Sa, 37(3). https://doi.org/10.4314/wsa.v37i3.68481

  • Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arabian Journal of Chemistry, 5(4), 439–446. https://doi.org/10.1016/j.arabjc.2010.12.022

    Article  CAS  Google Scholar 

  • Mohan, S. V., & Karthikeyan, J. (1997). Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environmental Pollution, 97(1–2), 183–187. https://doi.org/10.1016/S0269-7491(97)00025-0

    Article  CAS  Google Scholar 

  • Mondal, S., Purkait, M. K., & De, S. (2018). Adsorption of dyes. In Advances in Dye Removal Technologies (pp. 49–98). Springer, Singapore. https://doi.org/10.1007/978-981-10-6293-3_2.

  • Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42(1), 83–94. https://doi.org/10.1016/j.carbon.2003.09.022

    Article  CAS  Google Scholar 

  • Moreno-Castilla, C., Álvarez-Merino, M. A., Pastrana-Martínez, L. M., & López-Ramón, M. V. (2010). Adsorption mechanisms of metal cations from water on an oxidized carbon surface. Journal of Colloid and Interface Science, 345(2), 461–466. https://doi.org/10.1016/j.jcis.2010.01.062

    Article  CAS  Google Scholar 

  • Nightingale Jr, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry63(9), 1381–1387. https://doi.org/10.1021/j150579a011

  • Oursel, B. (2013). Transferts et dynamique des contaminants métalliques en zone côtière: Impact d’une grande agglomération méditerranéenne (Doctoral dissertation, Université de Toulon).

  • Pastrana-Martínez, L. M., López-Ramón, M. V., Fontecha-Cámara, M. A., & Moreno-Castilla, C. (2010). Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity. Water Research, 44(3), 879–885. https://doi.org/10.1016/j.watres.2009.09.053

    Article  CAS  Google Scholar 

  • Qu, J. E., Zhou, S., Wang, H., Cao, Z., & Liu, H. (2017). The application of an activated carbon supported Cu-Ce/Ac oxide anode on the electrocatalytic degradation of phenol. Int. J. Electrochem. Sci12, 9640–9651. https://doi.org/10.20964/2017.10.09

  • Rengaraj, S., Yeon, J. W., Kim, Y., Jung, Y., Ha, Y. K., & Kim, W. H. (2007). Adsorption characteristics of Cu (II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143(1–2), 469–477. https://doi.org/10.1016/j.jhazmat.2006.09.064

    Article  CAS  Google Scholar 

  • Savova, D., Petrov, N., Yardim, M. F., Ekinci, E., Budinova, T., Razvigorova, M., & Minkova, V. (2003). The influence of the texture and surface properties of carbon adsorbents obtained from biomass products on the adsorption of manganese ions from aqueous solution. Carbon, 41(10), 1897–1903. https://doi.org/10.1016/S0008-6223(03)00179-9

    Article  CAS  Google Scholar 

  • Serrano-Ruiz, J. C., Ramos-Fernández, E. V., Silvestre-Albero, J., Sepúlveda-Escribano, A., & Rodríguez-Reinoso, F. (2008). Preparation and characterization of CeO2 highly dispersed on activated carbon. Materials Research Bulletin, 43(7), 1850–1857. https://doi.org/10.1016/j.materresbull.2007.07.001

    Article  CAS  Google Scholar 

  • Shen, W., Zheng, J., Qin, Z., & Wang, J. (2003). Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide. Journal of Colloid and Interface Science, 264(2), 467–473. https://doi.org/10.1016/S0021-9797(03)00376-X

    Article  CAS  Google Scholar 

  • Song, M., Wei, Y., Cai, S., Yu, L., Zhong, Z., & Jin, B. (2018). Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents. Science of the Total Environment, 618, 1416–1422.

    Article  CAS  Google Scholar 

  • Spahn, H., & Schlünder, E. U. (1975). The scale-up of activated carbon columns for water purification, based on results from batch tests—I: Theoretical and experimental determination of adsorption rates of single organic solutes in batch tests. Chemical Engineering Science, 30(5–6), 529–537. https://doi.org/10.1016/0009-2509(75)80023-6

    Article  CAS  Google Scholar 

  • Tahir, H., Hammed, U., Sultan, M., & Jahanzeb, Q. (2010). Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. African Journal of Biotechnology, 9(48), 8206–8214. https://doi.org/10.5897/AJB10.911

    Article  CAS  Google Scholar 

  • Tamai, H., Kakii, T., Hirota, Y., Kumamoto, T., & Yasuda, H. (1996). Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chemistry of Materials, 8(2), 454–462. https://doi.org/10.1021/cm950381t

    Article  CAS  Google Scholar 

  • Tempkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica USSR, 12(1), 327.

    Google Scholar 

  • Tomita, A., Higashiyama, K., & Tamai, Y. (1981). Scanning electron microscopic study on the catalytic gasification of coal. Fuel, 60(2), 103–114. https://doi.org/10.1016/0016-2361(81)90003-X

    Article  CAS  Google Scholar 

  • Trovarelli, A., de Leitenburg, C., Boaro, M., & Dolcetti, G. (1999). The utilization of ceria in industrial catalysis. Catalysis Today, 50(2), 353–367. https://doi.org/10.1016/S0920-5861(98)00515-X

    Article  CAS  Google Scholar 

  • Tseng, R. L., Wu, F. C., & Juang, R. S. (2010). Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics. Journal of the Taiwan Institute of Chemical Engineers, 41(6), 661–669. https://doi.org/10.1016/j.jtice.2010.01.014

    Article  CAS  Google Scholar 

  • Vodrias, E., Fytianos, F., & Bozani, E. (2002). Sorption description isotherms of dyes from aqueous solutions and waste waters with different sorbent materials. Global Nest. the Int. J, 4(1), 75–78.

    Google Scholar 

  • Wulfsberg, G. (1991). Principles of descriptive inorganic chemistry. University Science Books.

    Google Scholar 

  • Yu, Y., Zhang, C., Yang, L., & Chen, J. P. (2017). Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. Chemical Engineering Journal, 315, 630–638. https://doi.org/10.1016/j.cej.2016.09.068

    Article  CAS  Google Scholar 

  • Yuh-Shan, H. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177. https://doi.org/10.1023/b:scie.0000013305.99473.cf

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following: L.M.P.-M. acknowledges the Spanish Ministry of Economy and Competitiveness (MINECO) for a Ramón y Cajal research contract (RYC-2016–19,347). Professor Abdelaziz Baçaoui, Laboratory of Applied Chemistry, Cadi Ayyad Marrakech University for the characterization at SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Khadir Gharibi.

Ethics declarations

Ethics approval

The authors declare that they have approved and respected the Journal Ethics.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouotou, D., Ghalit, M., Ndi, J.N. et al. Removal of metallic trace elements (Pb2+, Cd2+, Cu2+, and Ni2+) from aqueous solution by adsorption onto cerium oxide modified activated carbon. Environ Monit Assess 193, 467 (2021). https://doi.org/10.1007/s10661-021-09267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09267-9

Keywords

Navigation