Skip to main content
Log in

Environmental drivers of meiofaunal natural variability, Egypt, Southeastern Mediterranean

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sandy beaches are challenging ecosystems, in which biota experience extreme physical conditions. We sampled meiofauna in conjunction with environmental factors that are well-known to affect faunal associations to describe the ecological state of sandy beaches that experience natural and human-made disturbances. We applied a random stratified sampling design with monthly collections (1800 cores) at three beaches on the Alexandria, Egypt, coast during two sampling periods over 1 year from November to April and May to September. We used multivariate analyses to compare beaches for water quality, particle size, and meiofaunal assemblages. The environmental analysis explained 60% of the total variation of physical factors among beaches and grouped beaches that moderately sorted fine-grained sand and high water salinity vs. the beach with well-sorted, coarse-grain, and low salinity. Meiofaunal analyses revealed unexpected results. The abundance and temporal variation were low, and the explained proportion of natural variation by the putative environmental factors was small. The natural variation was an indicator of long-term beach ruin and oligotrophic conditions. Our results suggest that a large fraction of natural variation in beach meiofauna is stochastic or that other, non-measured, the natural forces (e.g., storm events) or human-made forces (e.g., tourism activities) are essential contributors to variation. Our best models indicate that meiofauna is more resilient to natural disturbances than to human-made stressors, and the higher the beach exposure to the synergetic effects of natural forces and anthropogenic stressors, the lower the ecological state is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelhamid, M. A., El-Barbary, M. I., & El-Deweny, M. E. M. (2013). Bacteriological status of ashtoum El-Gamil protected area. Egyptian Journal of Aquatic Biology and Fisheries, 17, 11–23.

    Google Scholar 

  • Abo-Taleb, H. A., El Raey, M., Abou Zaid, M. M., Ezz, S. A., & Aziz, N. A. (2015). Study of the physico-chemical conditions and evaluation of the changes in eutrophication-related problems in El- Mex Bay. African Journal of Environmental Science and Technology, 9, 354-364.

  • Adao, H., Alves, A. S., Patrıacio, J., Neto, J. M., Costa, M. J., & Marques, J. C. (2009). Spatial distribution of subtidal Nematoda communities along the salinity gradient in southern European estuaries. Acta Oecologica, 3(5), 287–300.

    Article  Google Scholar 

  • Alves, A. S., Adão, H., Ferrero, T. J., Marques, J. C., Costa, M. J., & Patrício, J. (2013). Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: The use of nematodes in ecological quality assessment. Ecological Indicators, 24, 462–475.

    Article  Google Scholar 

  • Anderson, M. J. (2003). DISTLM forward Distance-based multivariate analysis for a linear model using forward selection A computer program, Department of Statistics University of Auckland, pp. 1–10.

  • Anderson, M. J. (2005). PERMANOVA, Permutational multivariate analysis of variance (pp. 1–23). University of Auckland, New Zealand.

    Google Scholar 

  • Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+for PRIMER: Guide to software and statistical methods (pp. 1–214). Plymouth, Uk.

    Google Scholar 

  • Armenteros, M., Marti´N, I., Williams, J. P., Creagh, B., Gonza´Lez-Sanso´ N, G., & Capetillo, N. (2006). Spatial and temporal variations of meiofaunal communities from the Western Sector of the Gulf of Batabano. Cuba. I. Mangrove Systems. Estuaries and Coasts 29, 124-132.

  • Baldrighi, E., Semprucci, F., Franzo, A., Cvitkovic, I., Bogner, D., Despalatovic, M., Berto, D., Formalewicz, M. M., Scarpato, A., Frapiccini, E., Marini, M., & Grego, M. (2019). Meiofaunal communities in four Adriatic ports: Baseline data for risk assessment in ballast water management. Marine Pollution Bulletin, 147, 171–184.

    Article  CAS  Google Scholar 

  • Balsamo, M., Semprucci, F., Frontalini, F., & Coccioni, R. (2012). Meiofauna as a tool for marine ecosystem biomonitoring. Marine Ecosystems, 4, 77–104.

    Google Scholar 

  • Ben-David, A., & Davidson, C. E. (2014). Estimation method for serial dilution experiments. Journal of Microbiological Methods, 107, 214–221.

    Article  Google Scholar 

  • Brown, A., & McLachlan, A. (2010). The ecology of sandy shores. Elsevier.

    Google Scholar 

  • Costa, A., Valenca, A., & Santos, P. (2016). Is meiofauna community structure in Artificial Substrate Units a good tool to assess anthropogenic impact in estuaries? Marine Pollution Bulletin, 110, 354–361.

    Article  CAS  Google Scholar 

  • Coull, B. (1999). Role of meiofauna in estuarine soft-bottom habitats. Australian Journal of Ecology, 24, 327–343.

    Article  Google Scholar 

  • Coull, B., & Fleeger, J. W. (1977). Long-term temporal variation and community dynamics of meiobenthic copepods. Ecology, 58, 1136–1143.

    Article  Google Scholar 

  • Cunningham, R. B., & Lindenmayer, D. B. (2005). Modeling count data of rare species: Some statistical issues. Ecology, 86, 1135–1142.

    Article  Google Scholar 

  • Danovaro, R. (1996). Detritus-bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Marine Biology, 127(121), 113.

    Google Scholar 

  • Danovaro, R., Dinet, A., Duineveld, G., & Tselepides, A. (1999). Benthic response to particulate fluxes in different trophic environments: A comparison between the Gulf of Lions-Catalan Sea (western-Mediterranean) and the Cretan Sea (eastern-Mediterranean). Progress in Oceanography, 44, 287–312.

    Article  Google Scholar 

  • Defeo, O., McLachlan, A., Schoeman, D. S., Schlacher, T. A., Dugan, J., Jones, A., Lastra, M., & Scapini, F. (2009). Threats to sandy beach ecosystems: A review. Estuarine, Coastal and Shelf Science, 81, 1–12.

    Article  Google Scholar 

  • Dorgham, M. M., Hamdy, R., El Rashidy, H. H., Atta, M. M., & Musco, L. (2014). Distribution patterns of shallow water polychaetes (Annelida) along the Alexandria coast, Egypt (Eastern Mediterranean). Mediterranean Marine Science, 15, 635.

    Article  Google Scholar 

  • Dowidar, N. M. (1984). Phytoplankton biomass and primary productivity of the South-Eastern Mediterranean (pp. 983–1000). Faculty of Science, Alexandria University.

    Google Scholar 

  • EEAA. (2015). Alexandria Coastal Zone Management Project (ACZMP). Ministry of Environmental Affairs & Egyptian Environmental Affairs Agency (pp. 1–15). SFG1484V2.

  • El-Raey, M. F., Nasr, S., & Hendy, D. (2015). Integrating knowledge to assess coastal vulnerability to sea-level rise. In El- Mex Bay (Ed.), Egypt: The Application of the DIVA Tool. International Journal of Marine Science.

  • El-Shenawy, M. A., & El-Shenawy, M. (2009). Enterohaemorrhagic Escherichia coli O157 in coastal environment of Alexandria. Egypt. Microbial Ecology in Health and Disease, 17, 103–106.

    Article  Google Scholar 

  • El Nemr, A., El-Sadaawy, M. M., Khaled, A., & Draz, S. O. (2013). Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: Assessment and source recognition of petroleum hydrocarbons. Environmental Monitoring and Assessment, 185, 4571–4589.

    Article  CAS  Google Scholar 

  • El Wakeel, S., & Riley, J. (1957). The Determination of organic carbon in marine muds. ICES Journal of Marine Science, 22, 180–183.

    Article  Google Scholar 

  • Evrard, V., Huettel, M., Cook, P. L. M., Soetaert, K., Heip, C. H. R., & Middelburg, J. J. (2012). Importance of phytodetritus and microphytobenthos for heterotrophs in a shallow subtidal sandy sediment. Marine Ecology Progress Series, 455, 13–31.

    Article  CAS  Google Scholar 

  • First, M. R., & Hollibaugh, J. T. (2010). Environmental factors shaping microbial community structure in salt marsh sediments. Marine Ecology Progress Series, 399, 15–26.

    Article  CAS  Google Scholar 

  • Folk, R. L., & Ward, W. C. (1957). Brazos River bar [Texas]; A study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3–26.

    Article  Google Scholar 

  • Frihy, O. E. (2009). Morphodynamic implications for shoreline management of the western-Mediterranean sector of Egypt. Environmental Geology, 58, 1177–1189.

    Article  Google Scholar 

  • Frihy, O. E., & Deabes, E. (2012). Erosion chain reaction at El Alamein Resorts on the western Mediterranean coast of Egypt. Coastal Engineering, 69, 12–18.

    Article  Google Scholar 

  • Frihy, O. E., Dewidar, K. M., & El Raey, M. M. (1996). Evaluation of coastal problems at Alexandria, Egypt. Ocean & Coastal Management, 30, 281-295.

  • Gambi, M. C., & Dappiano, M. (2004). Mediterranean marine benthos: A manual of methods for its sampling and sudy. Società Italiana di Biologia Marina.

  • Gansfort, B., Fontaneto, D., & Zhai, M. (2020). Meiofauna as a model to test paradigms of ecological metacommunity theory. Hydrobiologia, 847, 2645–2663.

    Article  Google Scholar 

  • George, E. M. (2009). Egypt State of Environment Report. Egyptian Environmental Affaris Agency www.eeaa.gov.egeport. pp. 1–356.

  • Gheskiere, T., Hoste, E., Kotwicki, L., Degraer, S., Vanaverbeke, J., & Vincx, M. (2002). The sandy beach meiofauna and free-living nematodes from De Panne (Belgium). Bulletin de l’institut Royal des sciences Naturelles De Belgique, 72, 43–49.

    Google Scholar 

  • Gheskiere, T., Vincx, M., Weslawski, J. M., Scapini, F., & Degraer, S. (2005). Meiofauna as descriptor of tourism-induced changes at sandy beaches. Marine Environment Research, 60, 245–265.

    Article  CAS  Google Scholar 

  • Giere, O. (2009). Meiobenthology: The microscopic motile fauna of aquatic sediments (2nd ed., pp. 1–537). Springer-Verlag Berlin Heidelberg.

  • Grémare, A., Amouroux, J.-M., Cauwet, G., Charles, F., Courties, C., De Bovée, F., Dinet, A., Devenon, J. L., De Madron, X. D., Ferre, B., Fraunie, P., Joux, F., Lantoine, F., Lebaron, P., Naudin, J.-J., Palanques, A., Pujo-Pay, M., & Zudaire, L. (2003). The effects of a strong winter storm on physical and biological variables at a shelf site in the Mediterranean. Oceanologica Acta, 26, 407–419.

    Article  Google Scholar 

  • Ha, S. Y., Min, W.-K., Kim, D.-S., & Shin, K.-H. (2014). Trophic importance of meiofauna to polychaetes in a seagrass (Zostera marina) bed as traced by stable isotopes. Journal of the Marine Biological Association of the United Kingdom, 94, 121–127.

    Article  CAS  Google Scholar 

  • Hamdan, A. M., El-Sayed, A. F., & Mahmoud, M. M. (2016). Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). Journal of Applied Microbiology, 120, 1061–1073.

    Article  CAS  Google Scholar 

  • Hamdy, R., & Ibrahim, H. (2019). Recent changes in polychaete community along the Alexandria coast, Egy. Egyptian Journal of Aquatic Biology & Fisheries, 23, 1–12.

    Article  Google Scholar 

  • Higgins, R. P., & Thiel, H. (1988). Introduction to the study of meiofauna. Smithsonian Institution Press.

    Google Scholar 

  • Huys, R., Gee, J. M., Moore, C., & Hamond, R. (1996). Marine and brackish water harpacticoid copepods Part I. Synopses of the British Fauna (New Series) Book. In Kermack, D. M., Barnes, R. S .K. & Crothers (Eds.) (pp.1–352). London.

  • Iskander, M. M., Frihy, O. E., El Ansary, A. E., El Mooty, M. M., & Nagy, H. M. (2007). Beach impacts of shore-parallel breakwaters backing offshore submerged ridges, Western Mediterranean Coast of Egypt. Journal of Environmental Management, 85, 1109–1119.

    Article  Google Scholar 

  • Ismail, M. M., El Zokm, G. M., & El-Sayed, A. A. M. (2017). Variation in biochemical constituents and master elements in common seaweeds from Alexandria Coast, Egypt, with special reference to their antioxidant activity and potential food uses: prospective equations. Environmental Monitoring and Assessment, 189, 648.

    Article  Google Scholar 

  • Itoh, M., Kawamura, K., Kitahashi, T., Kojima, S., Katagiri, H., & Shimanaga, M. (2011). Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 58, 86–97.

    Article  Google Scholar 

  • Jammo, K. M. T. (2004). Biodegredation of organic matter in the marine environment of Alexandria (Eastern Harbor) (pp. 1–303). Ph D Alexandria University.

    Google Scholar 

  • Khairy, M. A., Kolb, M., Mostafa, A. R., El-Fiky, A., & Bahadir, M. (2012). Risk posed by chlorinated organic compounds in Abu Qir Bay, East Alexandria. Egypt. Environ Sci Pollut Res Int, 19, 794–811.

    Article  Google Scholar 

  • Korajkic, A., McMinn, B. R., & Harwood, V. J. (2018). Relationships between microbial indicators and pathogens in recreational water settings. International Journal of Environmental Research and Public Health 15.

  • Kotwicki, L., Szymelfenig, M., De Troch, M., Urban-Malinga, B., & Weslawski, J. M. (2005). Latitudinal biodiversity patterns of meiofauna from sandy littoral beaches. Biodiversity and Conservation, 14, 461–471.

    Article  Google Scholar 

  • Landres, P. B., Morgan, P., & Swanson, F. J. (1999). Overview of the use of natural variability concepts in managing ecological systems. Ecological Applications, 9, 1179–1188.

    Google Scholar 

  • Lee, K., & Levy, E. M. (1991). Bioremediation: Waxy crude oils stranded on low-energy shorelines. International Oil spill conference Proceeding, 1991, 541–547.

    Article  Google Scholar 

  • Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69, 1–24.

    Article  Google Scholar 

  • Lo, H. S., Xu, X., Wong, C. Y., & Cheung, S. G. (2018). Comparisons of microplastic pollution between mudflats and sandy beaches in Hong Kong. Environmental Pollution, 236, 208–217.

    Article  CAS  Google Scholar 

  • Maria, T. F., Paiva, P., Vanreusel, A., & Esteves, A. M. (2013). The relationship between sandy beach nematodes and environmental characteristics in two Brazilian sandy beaches (Guanabara Bay, Rio de Janeiro). Annals of the Brazilian Academy of Sciences, 85, 257–270.

    Article  Google Scholar 

  • Maria, T. F., Vanaverbeke, J., Vanreusel, A., & Esteves, A. M. (2016). Sandy beaches: State of the art of nematode ecology. Anais da Academia Brasileira de Ciências, 88, 1635–1653.

    Article  Google Scholar 

  • McLachlan, A., & Defeo, O. (2017). The ecology of sandy shores. Academic Press.

    Google Scholar 

  • McLachlan, A., Defeo, O., Jaramillo, E., & Short, A. D. (2013). Sandy beach conservation and recreation: Guidelines for optimising management strategies for multi-purpose use. Ocean & Coastal Management, 71, 256–268.

    Article  Google Scholar 

  • Milner, A. M., Collier, R. E. L., Roucoux, K. H., Müller, U. C., Pross, J., Kalaitzidis, S., Christanis, K., & Tzedakis, P. C. (2012). Enhanced seasonality of precipitation in the Mediterranean during the early part of the Last Interglacial. Geology, 40, 919–922.

    Article  Google Scholar 

  • Mitwally, H. (1999). Ecological and systematic studies of the interstitial fauna and benthic diatoms in the sandy beaches of Alexandria. Ph. D thesis, Faculty of Science, Alexandria University, 324.

  • Mitwally, H., & Abada, A. E. (2008). Spatial variability of meiofauna and macrofauna in a Mediterranean protected area, Burullus Lake. Egypt. Meiofauna Marina, 16, 185–200.

    Google Scholar 

  • Mitwally, H., Montagna, P., Halim, Y., Khalil, A., Dorgham, M., & Atta, M. (2004). Egyptian sandy beach meiofauna and benthic diatoms. Rapp Comm Int Mer Medit, 37, 537.

    Google Scholar 

  • Moens, T., Braeckman, U., Derycke, S., Fonseca, G., Gallucci, F., Gingold, R., Guilini, K., Ingels, J., Leduc, D., Vanaverbeke, J., Van Colen, C., Vanreusel, A., & Vincx, M. (2013). Ecology of free-living marine nematodes. Handbook of Zoology.

    Book  Google Scholar 

  • Montagna, P. A. (1984). In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Marine Ecology - Progress Series, 18, 119–130.

    Article  Google Scholar 

  • Montagna, P. A., Bauer, J. E., Hardin, D., & B, R., . (1989). Vertical distribution of microbial and meiofaunal populations in sediments of a natural coastal hydrocarbon seep. Journal of Marine Research, 47, 657–680.

    Article  CAS  Google Scholar 

  • Montagna, P. A., Bauer, J. E., Toal, J., Hardin, D., & Spies, R. B. (1987). Temporal variability and the relationship between benthic meiofaunal and microbial populations of a natural coastal petroleum seep. Journal of Marine Research, 45, 761–789.

    Article  CAS  Google Scholar 

  • Moreno, M., Ferrero, T. J., Granelli, V., Marin, V., Albertelli, G., & Fabiano, M. (2006). Across shore variability and trophodynamic features of meiofauna in a microtidal beach of the NW Mediterranean. Estuarine, Coastal and Shelf Science, 66, 357–367.

    Article  Google Scholar 

  • Nafaa, M. G., & Frihy, O. E. (1993). Beach and nearshore features along the dissipative coastline of the nile delta. Egypt Journal of Coastal Research, 9, 423.

    Google Scholar 

  • Nordstrom, K. F. (2004). Beaches and dunes of developed coasts. Cambridge University Press.

    Google Scholar 

  • Olausson, E. (1975). Methods for the chemical analysis of sediments. FAO Fisheries Technical Papers (FAO).

  • Ortega Cisneros, K., Smit, A. J., Laudien, J., & Schoeman, D. S. (2011). Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure. PLoS One, 6, e23724.

    Article  Google Scholar 

  • Papageorgiou, N., Moreno, M., Marin, V., Baiardo, S., Arvanitidis, C., Fabiano, M., & Eleftheriou, A. (2007). Interrelationships of bacteria, meiofauna and macrofauna in a Mediterranean sedimentary beach (Maremma Park, NW Italy). Helgoland Marine Research, 61, 31–42.

    Article  Google Scholar 

  • Pascal, P.-Y., Dupuy, C., Mallet, C., Richard, P., & Niquil, N. (2008). Bacterivory by benthic organisms in sediment: Quantification using15N-enriched bacteria. Journal of Experimental Marine Biology and Ecology, 355, 18–26.

    Article  CAS  Google Scholar 

  • Pascal, P.-Y., Dupuy, C., Richard, P., Mallet, C., du Chatelet, E. A., & Niquilb, N. (2009). Seasonal variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal mudflat. Limnology and Oceanography, 54, 1048–1059.

    Article  CAS  Google Scholar 

  • Pereira, T. J., Gingold, R., Villegas, A. D. M., & Rocha-Olivares, A. (2017). Patterns of spatial variation of meiofauna in sandy beaches of northwestern Mexico with contrasting levels of disturbance. Thalassas: An International Journal of Marine Sciences, 34, 53–63.

  • Power, D. M. (1999). Recovery in aquatic ecosystems: An overview of knowledge and needs. Journal of Aquatic Ecosystem Stress and Recovery, 6, 253–257.

    Article  Google Scholar 

  • Pusceddu, A., Gambi, C., Manini, E., & Danovaro, R. (2007). Trophic state, ecosystem efficiency and biodiversity of transitional aquatic ecosystems: Analysis of environmental quality based on different benthic indicators. Chemistry and Ecology, 23, 505–515.

    Article  CAS  Google Scholar 

  • Ranta, E., Kaitala, V., & Lundberg, P. (1998). Population variability in space and time: the dynamics of synchronous population fluctuations. Oikos, 83, 376–382.

    Article  Google Scholar 

  • Reiss, H., & Kroncke, I. (2005). Seasonal variability of benthic indices: An approach to test the applicability of different indices for ecosystem quality assessment. Marine Pollution Bulletin, 50, 1490–1499.

    Article  CAS  Google Scholar 

  • Riera, R., Núñez, J., Carmen Brito, M. D., & Tuya, F. (2011). Temporal variability of a s ubtropical intertidal meiofaunal ass emblage: Contrasting effects at the species and assemblage-level. Vie et milieu - Life and Environment, 61, 129–137.

    Google Scholar 

  • Rodrı́guez, J.G., Lastra, M., López, J., . (2003). Meiofauna distribution along a gradient of sandy beaches in northern Spain. Estuarine, Coastal and Shelf Science, 58, 63–69.

    Article  Google Scholar 

  • Santos, G. H. C., Cardoso, R. S., & Maria, T. F. (2019). Bioindicators or sediment relationships: Evaluating ecological responses from sandy beach nematodes. Estuarine, Coastal and Shelf Science, 224, 217–227.

    Article  Google Scholar 

  • Schlacher, T. A., Jones, A. R., Dugan, J. E., Weston, M. A., Harris, L., Schoeman, D. S., Hubbard, D. M., Scapini, F., Nel, R., & Lastra, M. (2014). Open-coast sandy beaches and coastal dunes. Coastal Conservation, 19, 37–92.

    Article  Google Scholar 

  • Schlacher, T. A., Schoeman, D. S., Dugan, J., Lastra, M., Jones, A., Scapini, F., & McLachlan, A. (2008). Sandy beach ecosystems: Key features, sampling issues, management challenges and climate change impact. Marine Ecology. ISSN, 0173–9565(29), 70–90.

    Article  Google Scholar 

  • Schratzberger, M., Lampadariou, N., Somerfield, P. J., Vandepitte, L., & Vanden Berghe, E. (2009). The impact of seabed disturbance on nematode communities: Linking field and laboratory observations. Marine Biology, 156, 709–724.

    Article  Google Scholar 

  • Semprucci, F., Colantoni, P., Sbrocca, C., Baldelli, G., Rocchi, M., & Balsamo, M. (2011). Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). Journal of Marine Systems, 87, 208–215.

    Article  Google Scholar 

  • Semprucci, F., Frontalini, F., Sbrocca, C., du Chatelet, E. A., Bout-Roumazeilles, V., Coccioni, R., & Balsamo, M. (2015). Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environment Monitoring and Assessment, 187, 187–251.

    Article  Google Scholar 

  • Sevastou, K., Lampadariou, N., & Eleftheriou, A. (2011). Meiobenthic diversity in space and time: The case of harpacticoid copepods in two Mediterranean microtidal sandy beaches. Journal of Sea Research, 66, 205–214.

    Article  Google Scholar 

  • Shreadah, A. M., Abdel-Mohsen M, El-Sayed, A., Mohamed A, A., & Hamam A. R. H. (2019). Evaluation of Different Anthropogenic Effluents Impacts on the Water Quality Using Principal Component Analysis: A Case Study of Abu-Qir Bay-Alexandria-Egypt. International Journal of Environmental Monitoring and Analysis, 7, 56.

  • Shreadah, M., Masoud, M., Khattab, A., & El Zokm, G. (2014). Impacts of different drains on the seawater quality of El-Mex bay (Alexandria, Egypt). Journal of Ecology and The Natural Environment, 6, 287–303.

    Article  Google Scholar 

  • Smith, E. P. (2019). Ending reliance on statistical significance will improve environmental inference and communication. Estuaries and Coasts, 43, 1–6.

    Article  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis. The Journal of the Fisheries Research Board of Canada Ottawa, Ont'ario (pp. 310) Canada.

  • Sun, X., Zhou, H., Hua, E., Xu, S., Cong, B., & Zhang, Z. (2014). Meiofauna and its sedimentary environment as an integrated indication of anthropogenic disturbance to sandy beach ecosystems. Marine Pollution Bulletin, 88, 260–267.

    Article  CAS  Google Scholar 

  • Swanson, F. J., Jones, J. A., Wallin, D. O., & Cissel, J. H. (1994). Natural variability-implications for ecosystem management. ecosystem management: Principles and applications. Jensen and Bourgeron (editors), II, 80–90.

    Google Scholar 

  • Szymelfenig, M., Kotwicki, L., & Graca, B. (2006). Benthic re-colonization in post-dredging pits in the Puck Bay (Southern Baltic Sea). Estuarine, Coastal and Shelf Science, 68, 489–498.

    Article  Google Scholar 

  • Tolhurst, T. J., Defew, E. C., & Dye, A. (2010). Lack of correlation between surface macrofauna, meiofauna, erosion threshold and biogeochemical properties of sediments within an intertidal mudflat and mangrove forest. Hydrobiologia, 652, 1–13.

    Article  CAS  Google Scholar 

  • Torres-Bejarano, F., González-Márquez, L. C., Díaz-Solano, B., Torregroza-Espinosa, A. C., & Cantero-Rodelo, R. (2016). Effects of beach tourists on bathing water and sand quality at Puerto Velero, Colombia. Environment, Development and Sustainability, 20, 255–269.

    Article  Google Scholar 

  • Traunspurger, W., & Majdi, N. (2017). Meiofauna. Methods in stream. Ecology, 3, 273–295.

    Google Scholar 

  • Urban-Malinga, B., Kotwicki, L., Gheskiere, T. A., Jankowska, K., Opalinski, K., & Malinga, M. (2004). Composition and distribution of meiofauna, including nematode genera, in two contrasting Arctic beaches. Polar Biology 27.

  • Zaki, H., Goma, R., Tadros, A., & Mahmoud, M. (2009). Environmental parameters of Alexnadria Inshore North western Coastall Area, Alexandria. World Applied science, 7, 715–725.

    CAS  Google Scholar 

  • Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P. M., Fontaneto, D., Fontanier, C., Gooday, A. J., Kristensen, R. M., Ivanenko, V. N., Sørensen, M. V., Vanreusel, A., Thébault, J., Mea, M., Allio, N., Andro, T., Arvigo, A., Castrec, J., Danielo, M., Foulon, V., … Fernandes, D. (2015). Is the meiofauna a good indicator for climate change and anthropogenic impacts? Marine Biodiversity, 45, 505–535.

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply thank Mr. A.S. Qamara for collecting and sorting samples. The first author is grateful to Prof Dr. John W Fleeger, Louisiana State University, USA, for reading the manuscript and for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan Mitwally Mitwally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights for review

Meiofaunal Natural variability is a good indicator of beach ruin.

Stochastic distribution, winter storms, and touristic activities are the fundamental causes of the large fraction of the unexplained variation in meiofaunal communities.

The beach that experiences the synergetic effect of natural forces and human-made activities has a worse ecological state.

Human-made disturbances; mechanical engineering, pollution, tourism activities, and the natural forces; winter storms, high energy, and rip currents are essential contributors for management decision-makers.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitwally, H.M., Hamdan, A.M. Environmental drivers of meiofaunal natural variability, Egypt, Southeastern Mediterranean. Environ Monit Assess 193, 185 (2021). https://doi.org/10.1007/s10661-021-08927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08927-0

Keywords

Navigation