Skip to main content
Log in

Assessment of microbial and heavy metal contamination in shallow hand-dug wells bordering Ona River, Southwest Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ona River is one of the three major rivers draining the city of Ibadan. Groundwater is the major source of drinking water in the metropolis; however, data on quality of shallow aquifers bordering Ona River is relatively scarce. This study aimed to evaluate bacteriological status, heavy metal content, and associated human and ecological health risks in hand-dug wells nearby Ona River. A total of 24 water samples from 12 sampling points were collected for chemical and microbial analyses. Heavy metals and microbial pathogens were analyzed using atomic absorption spectrometry and total plate count methods, respectively. Analyses of microbial and heavy metal (HMs) data showed that shallow hand-dug wells within the vicinity of Ona River were bacteriologically contaminated while most of analyzed heavy metals (except manganese) exceeded the drinking water quality standards. Interpretation of microbial and heavy metal (HMs) data identified predominance of anthropogenic activities as the major source of contamination in drinking water. Further scrutiny of HM data through integrated pollution indices identified two nearby wells (S7 and S8) exceed the safe limits and pose considerable risk to inhabitants. In terms of ecological risk index (ER), cadmium exhibited considerable to very high ER in all collected samples while manganese and zinc showed low ER in all analyzed water samples. Potential of non-carcinogenic risk through ingestion pathway in the study area was identified with the order of contributive ratios by HMs as Cd > Pb > Zn > Fe > Mn. The calculated target hazard quotient (THQ) due to ingested HMs for three human population categories exceeds the safe limit in the order of adult < children < infants. The study revealed the deteriorated state of waterside shallow hand-dug wells that need immediate actions by relevant stakeholders in water management. The study recommends improved hygienic practices, pretreatment of water before use, and most importantly, provision of potable pipe-borne water supply to the residents of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Estuarine, Coastal and Shelf Science, 136, 227–238.

    CAS  Google Scholar 

  • Adeniran, A. (2018). Assessment of water quality in slum area Ibadan. Hydrology Current Research, 9, 296. https://doi.org/10.4172/2157-7587.1000296.

    Article  Google Scholar 

  • Adesakin, T. A., Oyewale, A. T., Bayero, U., et al. (2020). Assessment of bacteriological quality and physicochemical parameters of domestic water sources in Samaru community, Zaria, Northwest Nigeria. Heliyon, 6, e04773. https://doi.org/10.1016/j.heliyon.2020.e04773.

    Article  Google Scholar 

  • Adewoyin, O. O., Kayode, O. T., Omeje, O., & Odetunmibi, O. A. (2019). Risk assessment of heavy metal and trace elements contamination in groundwater in some parts of Ogun State. Cogent Engineering, 6, 1632555. https://doi.org/10.1080/23311916.2019.1632555.

    Article  Google Scholar 

  • Adhikari, K., & Mal, U. (2019). Application of multivariate statistics in the analysis of groundwater geochemistry in and around the open cast coal mines of Barjora block, Bankura district, west Bengal, India. Environment and Earth Science, 78, 72. https://doi.org/10.1007/s12665-019-8071-0.

    Article  CAS  Google Scholar 

  • Adimalla, N. (2019a). Groundwater quality for drinking and irrigation purposes and potential health risk assessment: A case study from semi a rid region of south India. Exposure and Health, 11(2), 109–123. https://doi.org/10.1007/s12403-018-0288-8.

  • Adimalla, N. (2019b). Controlling factors and mechanism of groundwater quality variation in semi-arid region of South India: An approach of water quality index (WQI) and health risk assessment (HRA). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00374-8

  • Akanbi, O. A. (2018). Hydrological characterization and prospect of basement aquifers of Ibarapa region, southwestern Nigeria. Applied Water Science, 8, 89. https://doi.org/10.1007/s13201-018-0731-9.

    Article  CAS  Google Scholar 

  • Akhtar, S., Fatima, R., Soomro, Z. A., Hussain, M., Ahmad, S. R., & Ramzan, H. S. (2019). Bacteriological quality assessment of water supply schemes (WSS) of Mianwali, Punjab, Pakistan. Environment and Earth Science, 78, 458. https://doi.org/10.1007/s12665-019-8455-1.

    Article  Google Scholar 

  • Awomeso, J. A., Gbadebo, A. M., Taiwo, A. M., Ogunniyi, I. M., Ufoegbune, G. C., & Eruola, A. O. (2012). Impact of evaluation of urbanization on River Ona in Eleyele Catchment, Ibadan, Nigeria. Global Journal of Human-Social Science: Geography, Geo-Sciences Environmental Science, 12(11), 51–58.

    Google Scholar 

  • Ayantobo, O. O., Awomeso, J. A., Oluwasanya, G. O., & BadaTAiwo, A.M, B. S. (2014). Non-cancer human health risk assessment from exposure to heavy metals in surface and groundwater in Igun, Ijesha, Southwest Nigeria. American Journal of Environmental Sciences, 10(3), 301–310.

    Article  CAS  Google Scholar 

  • Ayedun, H., Gbadebo, A. M., Idowu, O. A., & Arowolo, T. A. (2015). Toxic elements in groundwater of Lagos and Ogun States southwest Nigeria and their human health risk assessment. Environment Monitoring and Assessment, 187(6), 1–17.

    Article  CAS  Google Scholar 

  • Aziz, R. K., Khalifa, M. M., & Sharaf, R. R. (2015). Contaminated water as a source of Helicobacter Pylori infection: A review. Journal of Advanced Research, 6(4), 539–547.

    Article  Google Scholar 

  • Barzegar, R., Moghaddam, A.A., Adamowski, J., Nazemi, A.M. (2018). Assessing the potential origins and human health risks of trace elements in groundwater: A case study in the Khoy plain, Iran. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0194-9.

  • Barzegar, R., Moghaddam, A. A., Soltani, S., Baomid, N., Tziriti, S. E., Adamowski, J., & Inam, A. (2019). Natural and anthropogenic origins of selected trace elements in the surface water of Tabriz area Iran. Environment and Earth Science, 78, 254. https://doi.org/10.1007/s12665-019-8250-z.

    Article  CAS  Google Scholar 

  • Bhardwaj, R., Gupta, A., & Garg, J. K. (2018). Impact of heavy metals on inhibitory concentration of Escherichia Coli- a case study of river Yamuna system Delhi India. Environmental Monitoring and Assessment, 190, 674. https://doi.org/10.1007/s10661-018-7061-0.

    Article  CAS  Google Scholar 

  • Bhutiani, R., Kulkarni, D. B., Khanna, D. R., & Gautam, A. (2017). Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy, Ecology and Environment, 2, 155–167. https://doi.org/10.1007/s40974-016-0019-6.

    Article  Google Scholar 

  • Bolarinwa, A. T. (2017). Hydrogeochemistry of groundwater within the lateritic profiles over migmatite and pegmatised schist of Ibadan, Nigeria. Journal of Geology and Mining Research, 9(4), 28–42. https://doi.org/10.5897/JGMR2016.0261.

    Article  CAS  Google Scholar 

  • Devanesan, E., Gandhi, M. S., Selvapandiyan, M., Senthilkumar, G., & Ravisankar, R. (2017). Heavy metal and potential ecological risk assessment in sediments collected from Poombuharto Karaikal coast of Tamilnadu using Energy dispersive X-ray fluorescence (EDXRF) technique. Beni-Suef University journal of basic and applied sciences, 6, 285–292.

    Article  Google Scholar 

  • Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, lower Cross River Basin (Southestern Nigeria). Geological Journal, 57, 295–304.

    Google Scholar 

  • Edokpayi, J. N., Rogawski, E. T., Kahler, D. M., et al. (2018). Challenges to sustainable safe drinking water: A case study of water quality and use across seasons in rural communities in Limpopo Province. South Africa. Water, 10, 159. https://doi.org/10.3390/w10020159.

    Article  CAS  Google Scholar 

  • Egbueri, J. C. (2020). Heavy metals pollution source identification and probabilistic health risk assessment of shallow groundwater in Onitsha. Nigeria: Analytical Letters. https://doi.org/10.1080/00032719.2020.1712606.

  • Egbueri, J. C., & Mgbenu, C. N. (2020). Chemometric analysis for pollution source identification and human health risk assessment of water resources in Ojoto Province, southeast Nigeria. Applied Water Science, 10, 98. https://doi.org/10.1007/s13201-020-01180-9.

    Article  CAS  Google Scholar 

  • Egbueri, J. C., & Unigwe, C. O. (2020). Understanding the extent of Heavy metal pollution in drinking water supplies from Umunya Nigeria. An indexical and Statistical Assessment. Analytical Letters. https://doi.org/10.1080/00032719.2020.1731521.

  • Egbueri, J. C., & Enyigwe, M. T. (2020). Pollution and Ecological risk assessment of potentially toxic elements in natural waters from the Ameka Metallogenic District in southeastern Nigeria. Analytical Letters. https://doi.org/10.1080/00032719.2020.1759616.

    Article  Google Scholar 

  • Ganiyu, S. A., Olurin, O. T., Awaye, K. T., & Adeleke, O. O. (2017). Heavy metals content and physico-chemical status of groundwater around lead smelting area in southwestern Nigeria Urban settlement. The African Review of Physics, 12, 14–22.

    Google Scholar 

  • Ganiyu, S. A., Badmus, B. S., Olurin, O. T., & Ojekunle, Z. O. (2018). Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria. Applied Water Science, 8, 35. https://doi.org/10.1007/s13201-018-0677-y.

    Article  CAS  Google Scholar 

  • Gargouri, D., Gzam, M., Kharroubi, A., & Jedoui, Y. (2018). Use of sediment quality indicators for heavy metals contamination and ecological risk assessment in urbanized coastal zones. Enviromental Earth Sciences., 77, 381. https://doi.org/10.1007/s12665-018-7567-3.

    Article  CAS  Google Scholar 

  • Gu, Y. G., & Gao, Y. P. (2018). Bioaccessibilities and health implications of heavy metals in exposed-lawn soils from 28 urban parks in the mega city Guangzhou inferred from an in vitro physiologically based extraction test. Ecotoxicology and Environmental Safety, 148, 747–753.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control-a sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Hakima, Z., Mohamed, M., Aziza, M., Mehdi, M., Bendahhou, Z., & Jean-Francois, B. (2017). Environmental and ecological risk of heavy metals in the marine sediment form Dakhla Bay, Morocco. Environmental Science and Pollution Research, 24(9), 7970–7981.

    Article  CAS  Google Scholar 

  • Herojeet, R., Rishi, M. S., & Kishore, N. (2015). Integrated approach to heavy metal pollution indices and complexity quantification using chemometric models in the Sirsa Basin, Nalagarh valley, Himachal Pradesh, India. Chinese Journal of Geochemistry, 34(4), 620–633.

    Article  CAS  Google Scholar 

  • Ipeaiyeda, A. R., & Obaje, G. M. (2017). Impact of cement effluent on water quality of rivers. A case study of Onyi River at Obajana, Nigeria. Cogent Environmental Science, 3, 1319102. https://doi.org/10.1080/23311843.2017.1319102.

    Article  CAS  Google Scholar 

  • Joseph, P., Bijoy Nandan, S., Adarsh, K. J., Anu, P. R., Varghese, R., Sreelekshmi, S., et al. (2019). Heavy metal contamination in representative surface sediments of mangrove habitat of Cochin Southern India. Environment and Earth Science, 78, 490. https://doi.org/10.1007/s12665-019-8499-96.

    Article  Google Scholar 

  • Jun, R., Zhen, S., Ling, T., & Jianxiu, H. (2017). Speciation and contamination assessment of metals in the sediments form the Lanzhou section of the yellow river China. Environment Protection Engineering, 43(3), 113–124. https://doi.org/10.5277/epe170307.

    Article  Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.

    Article  Google Scholar 

  • Koda, E., Miszkowska, A., & Sieczka, A. (2017). Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Applied Sciences, 7, 638. https://doi.org/10.3390/app7060638.

    Article  CAS  Google Scholar 

  • Mazhar, I., Hamid, A., & Afzal, S. (2019). Groundwater quality assessment and human health risks in Gujranwala District Pakistan. Environment and Earth Science, 78, 634. https://doi.org/10.1007/s12665-019-8644-y.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine river. Geological Journal, 2, 109–118.

    Google Scholar 

  • NGSA. (2016). Geological and Mineral Resources Map of Ogun State. Nigerian Geological Survey Agency, Abuja, Nigeria: Nigeria.

  • NIS (Nigerian Industrial Standard) (2015): Nigerian Standard for Drinking Water Quality. N1S-554–2015. 28pp.

  • Ojo, O. M. (2018). River water quality assessment: A case study of River Ona, Southwestern, Nigeria. ABUAD Journal of Engineering Research and Development (AJERD), 1(3), 290–294.

    Google Scholar 

  • Okunlola, O. A., Adeigbe, O. C., & Oluwatoke, O. O. (2009). Compositional and petrogenetic features of schistose rocks of Ibadan area, southwestern Nigeria. Earth Sciences Research Journal, 3(2), 20–43.

    Google Scholar 

  • Olayinka, O. O., Adedeji, H. O., Akinyemi, A. A., & Oresanya, O. J. (2017). Assessment of the pollution status of Eleyele lake, Ibadan, Oyo State Nigeria. Journal of Health and Pollution, 7(15), 51–62.

    Article  Google Scholar 

  • Osinowo, O. O., & Arowoogun, K. I. (2020). A multi-criteria decision analysis for groundwater potential evaluation in parts of Ibadan, southwestern Nigeria. Applied Water Science, 10, 228. https://doi.org/10.1007/s13201-020-01311-2.

    Article  Google Scholar 

  • Paul, R., Brindha, K., Gowrisankar, G., Tan, M. L., & Singh, M. K. (2019). Identification of hydrogeochemical processes controlling groundwater quality in Tripura, Northeast India using evaluation indices, GIS and multivariate statistical methods. Environment and Earth Science, 78, 470. https://doi.org/10.1007/s12665-019-8479-6.

    Article  CAS  Google Scholar 

  • Prasad, B., Kumari, P., Bano, S., & Kumari, S. (2008). Groundwater quality evaluation near a mining area and development of heavy metal pollution index. Applied Water Science, 4, 59. https://doi.org/10.1007/s13201-013-0126-x.

    Article  CAS  Google Scholar 

  • Selvam, S., Anthony Ravindran, A., Venkatramanan, S., & Singaraja, C. (2017). Assessment of heavy metal and bacterial pollution in coastal aquifers from SIPCOT Industrial zones, Gulf of Mannar, South coast of Tamil Nadu India. Applied Water Science, 7, 897–913. https://doi.org/10.1007/s13201-015-0301-3.

    Article  Google Scholar 

  • Shah, M., Sircar, A., Shaikh, N., Patel, K., Sharma, D., Vaidya, D. (2019): Comprehensive geochemical/hydrochemical and geo-thermometry analysis of Unai geothermal field, Gujarat, India. Acta Geochim, 38(1), 145-158.

  • Shankar, B. S. (2019). A critical assay of heavy metal pollution index for the groundwater of Peenya Industrial Area, Bangalore, India. Environmental Monitoring and Assessment, 191, 289. https://doi.org/10.1007/s10661-019-7453-9.

    Article  CAS  Google Scholar 

  • Srarfi, F., Rachdi, R., Bol, R., Gocke, M. I., Brahim, N., & Slimshimi, N. (2019). Stream sediments geochemistry and the influence of flood phosphate mud in mining area, Metlaoui, Western South of Tunisia. Environment and Earth Science, 78, 211. https://doi.org/10.1007/s12665-019-8215-2.

    Article  CAS  Google Scholar 

  • Su, H., Kang, W., Xu, Y., & Wang, J. (2017). Assessing groundwater quality and health risks of nitrogen pollution in the Shenfu mining area of Shaanxi Province, Expo Health, northwest China. https://doi.org/10.1007/s12403-017-0247-9.

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust, a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Tomilson, D. L., Wilson, J. G., Hariis, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575.

    Article  Google Scholar 

  • Tripti, A.K., Maleva, M., Kiseleva, I., Maiti, S.K., Morozova, M. (2019). Toxic metal (loid)s contamination and potential human health risk assessment in the vicinity of century-old copper smelter, Karabash, Russia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00414-3.

  • Ukah, B.U., Egbueri, J.C., Unigwe,C.O., Ubido, O.E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-019-00039-3.

  • USEPA. (2012). Integrated risk information system, United States Environmental Protection Agency. https://cfpub.epa.gov/nceal/iris/index.cfm?fuseaction-iris.showsubstance.list. Accessed 3 May 2012.

  • Wagh, V.M., Panaskar, D.B., Mukate, S.V., Gaikward, S.K., Muley, A.A., Varade, A.M. (2018). Health Risk Assessment of Heavy metal contamination in groundwater of Kadava River Basin, Nashik, India. Modelling Earth Systems and Environment. https://doi.org/10.1007/s40808-018-0496-z

  • WHO. (2015). Section 1: Managing the Quality of Drinking water sources. In: Schmoll, O; Howard, G., Chilton, G. Protecting Groundwater for Health. Managing the Quality of Drinking water. IWA publishing for World Health Organization.

  • XieBais., Li, Y., Liu, L., Wang, S., Xi, J., Q. (2016). Seasonal variations of microbial community in a full scale oil field produced water treatment plant. Global Journal of Environmental Science and Management, 2, 69–78.

    Google Scholar 

  • Zhaoyong, Z., Abudu Waili, J., & Fengqing, J. (2015). Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China. Environmental Monitoring and Assessment, 187(2), 33. https://doi.org/10.1007/s10661-014-4191-x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saheed Adekunle Ganiyu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganiyu, S.A., Mabunmi, A.A., Olurin, O.T. et al. Assessment of microbial and heavy metal contamination in shallow hand-dug wells bordering Ona River, Southwest Nigeria. Environ Monit Assess 193, 126 (2021). https://doi.org/10.1007/s10661-021-08910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08910-9

Keywords

Navigation