Skip to main content
Log in

Mercury distributions in sediments of an estuary subject to anthropogenic hydrodynamic alterations (Patos Estuary, Southern Brazil)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The city of Rio Grande, located on the right bank of the Patos Estuary, has been severely contaminated by mercury (Hg) due to anthropogenic activities that chiefly began in the eighteenth century. To investigate the natural mercury distribution along the salinity gradient in the estuary, three sediment cores were collected from a region of the estuary that has experienced less anthropogenic impacts, namely its left bank. Our study demonstrates that accumulation of Hg and formation of metal sulfide minerals take place in fine grain sediment horizons within the sampled sediment cores. Mercury immobilization in these sediments occurs via binding to organic matter coatings on fine grain sediment particles, as well as by incorporation into and/or co-precipitation with iron sulfide minerals. The grain size controls over Hg accumulation and sulfide mineral formation were statistically demonstrated using principal component analysis. Different fine particulate sediment deposition patterns occurred at each sampling location, which is attributed to the consequence of hydrological changes in the estuary resulting from navigation infrastructure reforms performed over the past 200 years in the local port (e.g., dredging) and its surroundings. We suggest that the port building and maintenance activities have influenced Hg distributions in the estuarine sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez-Iglesias, P., and Rubio, B. (2012). Early diagenesis of organic-matter-rich sediments in a ría environment: organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuarine, Coastal and Shelf Science 100. Elsevier Ltd: 113-123. doi:https://doi.org/10.1016/j.ecss.2012.01.005.

    Article  Google Scholar 

  • Antiqueira, J., & Calliari, L. (2005). Características sedimentares da desembocadura da Laguna dos Patos. Gravel, 3, 39-46.

    Google Scholar 

  • Aston, S. R., & Chester, R. (1976). Estuarine sedimentary processes. In J. D. Burton & P. S. Liss (Eds.), Estuarine chemistry (pp. 37-52). London: Academic Publisher Inc..

    Google Scholar 

  • Barnett, M. O., Turner, R. R., & Singer, P. C. (2001). Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen. Applied Geochemistry, 16, 1499-1512. https://doi.org/10.1016/S0883-2927(01)00026-9.

    Article  CAS  Google Scholar 

  • Berner, R. A. (1984). Sedimentary pyrite formation. American Journal of Science, 268, 1-23. https://doi.org/10.2475/ajs.268.1.1.

    Article  Google Scholar 

  • Bianchi, T.S. (2007). Biogeochemistry of estuaries. 1 st. New York: Oxford University Press.

  • Bonnissel-Gissinger, P., Alnot, M., Lickes, J. P., Ehrhardt, J. J., & Behra, P. (1999). Modeling the adsorption of mercury (II) on (hydr) oxides II: α-FeOOH (goethite) and amorphous silica. Journal of Colloid and Interface Science, 215, 313-322. https://doi.org/10.1006/jcis.1999.6263.

    Article  CAS  Google Scholar 

  • Brooks, K. M. (2001). An evaluation of the relationship between salmon farm biomass, organic inputs to sediments, physicochemical changes associated with those inputs and the infaunal response - with emphasis on total sediment. Washington: Aquatic Environmental Sciences.

    Google Scholar 

  • Brown, J. R., Michael Bancroft, G., Fyfe, W. S., & McLean, R. A. N. (1979). Mercury removal from water by iron sulfide minerals. An electron spectroscopy for chemical analysis (ESCA) study. Environmental Science and Technology, 13, 1142-1144. https://doi.org/10.1021/es60157a013.

    Article  CAS  Google Scholar 

  • Brüchert, V., Jørgensen, B. B., Neumann, K., Riechmann, D., Schlösser, M., & Schulz, H. (2003). Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochimica et Cosmochimica Acta, 67, 4505-4518. https://doi.org/10.1016/S0016-7037(03)00275-8.

    Article  CAS  Google Scholar 

  • Bunsen, R. (1847). Ueber den innern Zusammenhang der pseudovulkanischen Erscheinungen Islands. Ann. Chem. Pharm., 1-59.

    Article  Google Scholar 

  • Burton, J. D. (1976). Basic properties and processes in estuarine chemistry. In J. D. Burton & P. S. Liss (Eds.), Estuarine chemistry (pp. 1-36). London: Academic Publisher Inc..

    Google Scholar 

  • Cesar, W. (2015). Rio Grande do big bang a 2015 (1st ed.). Rio de Janeiro: Topbooks.

    Google Scholar 

  • Costa, L., Mirlean, N., Quintana, G. C., Adebayo, S., & Johannesson, K. (2019). Distribution and geochemistry of arsenic in sediments of the world’s largest choked estuary: the Patos Lagoon, Brazil. Estuaries and Coasts. Springer US, 42, 1896-1911. https://doi.org/10.1007/s12237-019-00596-0.

    Article  CAS  Google Scholar 

  • Dreys, N. (1827). Nicolau Dreys diaries. Rio Grande.

  • Ehrhardt, J. J., Behra, P., Bonnissel-Gissinger, P., & Alnot, M. (2000). XPS study of the sorption of Hg (II) onto pyrite FeS2. Surface and Interface Analysis, 30, 269-272. https://doi.org/10.1002/1096-9918(200008)30:1<269::AID-SIA758>3.0.CO;2-N.

    Article  CAS  Google Scholar 

  • Forstner, U., & Salomons, W. (1984). Metals in the hydrocycle (1st ed.). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-69325-0e-1SBN-13.

    Book  Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1979). Metal pollution in the aquatic environment (1st ed.). Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Fossing, H., & Jørgensen, B. B. (1989). Chromium reduction method of bacterial sulfate reduction in sediments: measurement reduction of a single-step chromium method evaluation. Biogeochemistry, 8, 205-222.

    Article  CAS  Google Scholar 

  • Fragomeni, de Moura, L. P., Roisenberg, A., & Mirlean, N. (2010). Poluição por Mercúrio em Aterros Urbanos do Período Colonial no Extremosul do Brasil. Quimica Nova, 33, 1631-1635.

    Article  CAS  Google Scholar 

  • Hach, C., (2007). DR 2800 Spectrophotometer user manual. USA. https://doi.org/10.3928/01477447-20101221-06

  • Hernández-Crespo, C., & Martín, M. (2013). Mid-term variation of vertical distribution of acid volatile sulphide and simultaneously extracted metals in sediment cores from Lake Albufera (Valencia, Spain). Archives of Environmental Contamination and Toxicology, 65, 654-664. https://doi.org/10.1007/s00244-013-9941-1.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., & Reimer, J. J. (2010). Biogeochemistry of sediments. In X. L. O. Pérez & F. M. Vazquez (Eds.), Biogeochemistry and pedogenetic process in saltmarsh and mangrove systems (1st ed., pp. 1-25). New York: Nova Science.

    Google Scholar 

  • Hyland, M. M., Jean, G. E., & Bancroft, G. M. (1990). XPS and AES studies of Hg (II) sorption and desorption reactions on sulphide minerals. Geochimica et Cosmochimica Acta, 54, 1957-1967. https://doi.org/10.1016/0016-7037(90)90264-L.

    Article  CAS  Google Scholar 

  • Jeong, H. Y., Klaue, B., Blum, J. D., & Hayes, K. F. (2007). Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environmental Science and Technology, 41, 7699-7705. https://doi.org/10.1021/es070289l.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B., & Kasten, S. (2005). Sulfur cycling and methane oxidation. In H. D. Schulz & M. Zabel (Eds.), Marine geochemistry (2nd ed., pp. 271-309). Berlin: Springer.

    Google Scholar 

  • Kjerfve, B., (1994). Coastal lagoons, in: Kjerfve, B. (Ed.), Coastal Lagoon Processes. Elsevier Oceanographic Series, Amsterdam, The Netherlands, pp. 1–8. https://doi.org/10.1016/0378-3839(95)90002-0

    Article  Google Scholar 

  • Kütter, V. T., Mirlean, N., Baisch, P. R., Kütter, M. T., & Silva-Filho, E. V. (2009). Mercury in freshwater, estuarine, and marine fishes from Southern Brazil and its ecological implication. Environmental Monitoring and Assessment, 159, 35-42. https://doi.org/10.1007/s10661-008-0610-1.

    Article  CAS  Google Scholar 

  • Lacerda, L. D., & Malm, O. (2008). Contaminação por mercúrio em ecossistemas aquáticos : uma análise das áreas críticas. Estudos Avançados, 22, 173-190.

    Article  Google Scholar 

  • Marques, W. C., Fernandes, E. H. L., Moraes, B. C., Möller, O. O., & Malcherek, A. (2010). Dynamics of the Patos Lagoon coastal plume and its contribution to the deposition pattern of the southern Brazilian inner shelf. Journal of Geophysical Research: Oceans, 115(10), 1–22. https://doi.org/10.1029/2010JC006190

  • Meysman, F. J. R., & Middelburg, J. J. (2005). Acid-volatile sulfide (AVS) - a comment. Marine Chemistry, 97, 206-212. https://doi.org/10.1016/j.marchem.2005.08.005.

    Article  CAS  Google Scholar 

  • Mirlean, N., & Oliveira, C. (2006). Mercury in coastal reclamation fills in southernmost Brazil: historical and environmental facets. Journal of Coastal Research, 226, 1573-1576. https://doi.org/10.2112/04-0352.1.

    Article  Google Scholar 

  • Mirlean, N., Andrus, V. E., & Baisch, P. (2003). Mercury pollution sources in sediments of Patos Lagoon Estuary, Southern Brazil. Marine Pollution Bulletin, 46, 331-334. https://doi.org/10.1016/S0025-326X(02)00404-6.

    Article  CAS  Google Scholar 

  • Mirlean, N., Calliari, L., Baisch, P., Loitzenbauer, E., & Shumilin, E. (2009). Urban activity and mercury contamination in estuarine and marine sediments (Southern Brazil). Environmental Monitoring and Assessment, 157, 583-589. https://doi.org/10.1007/s10661-008-0558-1.

    Article  CAS  Google Scholar 

  • Moller, O. O., Lorenzzentti, J. A., Stech, J. L., & Mata, M. M. (1996). The Patos Lagoon summertime circulation and dynamics. Continental Shelf Research, 16, 335-351. https://doi.org/10.1016/0278-4343(95)00014-R.

    Article  Google Scholar 

  • Moller, O. O., Castaing, P., Salomon, J.-C., & Lazure, P. (2001). The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries, 24, 297. https://doi.org/10.2307/1352953.

    Article  Google Scholar 

  • Morse, J. W., & Luther, G. W. (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3373-3378.

    Article  CAS  Google Scholar 

  • Niencheski, L. F., Moore, W. S., and Windom, H. L. (2014). History of human activity in coastal Southern Brazil from sediment. Marine Pollution Bulletin 78. Elsevier Ltd: 209-212. doi:https://doi.org/10.1016/j.marpolbul.2013.10.042.

    Article  CAS  Google Scholar 

  • NRCC. (2004). HISS-1, MESS-3, PACS-2 marine sediment reference material for trace metals and other constituents. Canada.

  • Otero, X. L., Ferreira, T. O., Huerta-Díaz, M. A., Partiti, C. S. M., Souza, V., Vidal-Torrado, P., & Macías, F. (2009). Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia - SP, Brazil). Geoderma, 148. Elsevier B.V., 318-335. https://doi.org/10.1016/j.geoderma.2008.10.016.

    Article  CAS  Google Scholar 

  • Perelman, A. (1967). Geochemistry of epigenesis monographs in geoscience (1st ed.). New York: Plenum Press. https://doi.org/10.1007/978-1-4684-7520-3.

    Book  Google Scholar 

  • Pimentel, F. (1944). Aspectos Gerais do Município do Rio Grande (1st ed.). Porto Alegre: Gráfica Imprensa Oficial.

    Google Scholar 

  • Postma, H. (1967). Sediment transport and sedimentation in the estuarine environment. In G. H. Lauff (Ed.), Estuaries (pp. 158-179). Washington: American Association for the Advancement of Science.

    Google Scholar 

  • Quintana, G. C., & Mirlean, N. (2018). Groundwater contamination by mercury from the aforetime carroting practice. Bulletin of Environmental Contamination and Toxicology, 100. Springer US, 839-842. https://doi.org/10.1007/s00128-018-2333-5.

    Article  CAS  Google Scholar 

  • Quintana, G. C., and Mirlean, N. (2019). Record of Hg pollution around outset of colonization in Southern Brazil. Environmental Monitoring and Assessment 191. Environmental Monitoring and Assessment: 1-8. doi:https://doi.org/10.1007/s10661-019-7404-5.

  • Rickard, D., & Luther, G. W. (2007). Chemistry of iron sulfides. Chemical Reviews, 107. https://doi.org/10.1021/cr0503658.

    Article  CAS  Google Scholar 

  • Rojas, N., & Silva, N. (2005). Early diagenesis and vertical distribution of organic carbon and total nitrogen in recent sediments from southern Chilean fjords (Boca del Guafo to Pulluche Channel). Investigaciones Marinas, 33, 183-194. https://doi.org/10.4067/s0717-71782005000200005.

    Article  Google Scholar 

  • Saint-Hilaire, A. (1820). August Saint-Hilaire diaries. Rio Grande.

  • Skyllberg, U., Bloom, P. R., Qian, J., Lin, C. M., & Bleam, W. F. (2006). Complexation of mercury (II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environmental Science and Technology, 40.

  • Svensson, M., Düker, A., & Allard, B. (2006). Formation of cinnabar-estimation of favourable conditions in a proposed Swedish repository. Journal of Hazardous Materials, 136, 830-836. https://doi.org/10.1016/j.jhazmat.2006.01.018.

    Article  CAS  Google Scholar 

  • USEPA. (1996). Method 3050B: Acid digestion of sediments, sludges, and soils. 1996. Vol. 2. doi:https://doi.org/10.1117/12.528651.

  • USEPA. (1998). METHOD 7471B: mercury in solid or semisolid waste.

  • Van Bemmelen, J. M. (1886). Bijdragen tot de kennis van den alluvialen bodem in Nederland. Verhandelingen der Akademie van Wetenschappen, Amsterdam, 25, 33-105.

    Google Scholar 

  • WHO (2003). Mercury environmental health criteria 86. Geneva: WHO.

  • Windom, H. L., Niencheski, L. F., & Smith, R. G. (1999). Biogeochemistry of nutrients and trace metals in the estuarine region of the Patos Lagoon (Brazil). Estuarine, Coastal and Shelf Science, 48, 113-123. https://doi.org/10.1006/ecss.1998.0410.

    Article  CAS  Google Scholar 

  • Winfrey, M., Campbell, P. G. C., Lewis, A. G., Chapamn, P. M., Crowder, A. A., Fletcher, W. K., Imber, B., Luoma, S. N., & Stokes, P. M. (1988). In National Reseach Concil of Canada (Ed.), Biologicaly available metals in sediments (1st ed.). Halifax: National Reseach Concil of Canada.

    Google Scholar 

  • Wolfenden, S., Charnock, J. M., Hilton, J., Livens, F. R., & Vaughan, D. J. (2005). Sulfide species as a sink for mercury in lake sediments. Environmental Science & Technology, 39, 6644-6648.

    Article  CAS  Google Scholar 

  • Yang, Y., Zhang, L., Chen, F., Kang, M., Wu, S., & Liu, J. (2014). Seasonal variation of acid volatile sulfide and simultaneously extracted metals in sediment cores from the Pearl River Estuary. Soil and Sediment Contamination, 23, 480-496. https://doi.org/10.1080/15320383.2014.838207.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Coordination of Improvement of Higher Level Personnel of Brazilian government (CAPES) by grant of scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Quintana.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintana, G., Mirlean, N., Costa, L. et al. Mercury distributions in sediments of an estuary subject to anthropogenic hydrodynamic alterations (Patos Estuary, Southern Brazil). Environ Monit Assess 192, 266 (2020). https://doi.org/10.1007/s10661-020-8232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8232-3

Keywords

Navigation