Skip to main content

Advertisement

Log in

Pattern of the state of eutrophication in the floodplain wetlands of eastern India in context of climate change: a comparative evaluation of 27 wetlands

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The floodplain wetlands in different regional settings vary with time and space in terms of function and geomorphological diversity. In recent decades, these eco-sensitive waterbodies have been exposed to a wide range of anthropogenic threats and climatic changes. Therefore, assessment of these ecological and environmental threats is prerequisite to understand the state of ecosystem and to develop a sustainable management strategy for conservation of wetland biodiversity and fisheries enhancement. This paper discusses the region-specific pattern of trophic state index (TSI) of the 27 floodplain wetlands in West Bengal, India. Carlson TSI and Lamparelli TSI methods were used to determine a better approach based on historical and continuous dataset and to delineate the interrelationship among historical climatic variability for sustainable management of the resources. The study revealed that agro-climatic divisions do not unveil any significant impact on the TSI calculated using Carlson TSI as well as Lamparelli TSI method. The TSI scores for the two methods were significantly different (p < 0.01) for different zones based on wetland habitat types. The TSI scores revealed most of the wetlands to be in mesotrophic state. Principal component analysis (PCA) indicated that TSI scores were having similar pattern of variation with rainfall and water temperature. The present study also conveys fundamental information on ecological status based on the trophic state, which will aid to develop region-specific strategies for sustainable fisheries enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA. (1998). Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC.

  • Anonymous. (2000). Ecology and fisheries of beels in West Bengal. Kolkata: ICAR-Central Inland Fisheries Research Institute Barackpore Bulletin No.103.10-11p.

    Google Scholar 

  • Bassi, N., Kumar, M. D., Sharma, A., & Pardha-Saradhia, P. (2014). Status of wetlands in India: a review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies, 2, 1–19. https://doi.org/10.1016/j.ejrh.2014.07.001.

    Article  Google Scholar 

  • Bekteshi, A., & Cupi, A. (2014). Use of trophic state index (Carlson, 1977) for assessment of trophic status of the Shkodra Lake. Journal of Environmental Protection and Ecology, 15(1), 359–365.

    Google Scholar 

  • Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Canario, J., Chatterjee, M., Sarkar, S. K., Branco, V., Bhattacharya, B., Bandyopadhyay, A. K., & Aftab Alam, Md., (2008). Geochemistry of major and trace elements in core sediments of Sunderban Delta, India:An assessment of metal pollution using atomic absorption spectrometer and inductively coupled plasms mass spectrometry. Sánchez, M. L. (Ed.) Causes and Effects of Heavy Metal Pollution, 305–340. Hauppauge: NOVA Science Publishers.

  • Bhattacharya, P. (2014). A study to investigate the importance of an oxbow lake in West Bengal, India. International Conference on Emerging Trends in Computer and Image Processing (ICETCIP2014) Dec. 15–16, 2014 Pattaya (Thailand). Processing pp. 45–46.

  • Biswasroy, M., Samal, N. R., Roy, P. K., & Mazumdar, A. (2011). Watershed management with special emphasis on fresh water wetland: a case study of a flood plain wetland in West Bengal, India. Global NEST Journal, 13(1), 1–10.

    Google Scholar 

  • Boyer, T., & Polasky, S. (2004). Valuing urban wetlands: a review of non-market valuation studies. Wetlands, 24(4), 744–755. https://doi.org/10.1672/0277-5212(2004)024[0744:VUWARO]2.0.CO;2.

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369.

    Article  CAS  Google Scholar 

  • Carlson, R. E., & Simpson, J. (1996). A coordinator’s guide to volunteer lake monitoring methods. Medison: North American Lake Management Society 96 pp.

    Google Scholar 

  • Castagnino, W. A. (1982). Investigación de modelossimplificados de eutroficatiónenlagostropicales. Revised version. Washington, D.C.: Pan American Health Organization (PAHO); Pan American Center for Sanitary Engineering and Environmental Sciences (CEPIS).

    Google Scholar 

  • Chaves, F. I. B., Lima, P. F., Leitão, R. C., Paulino, W. D., & Santaella, S. T. (2013). Influence of rainfall on the trophic status of a Brazilian semiarid reservoir. Acta Scientiarum - Biological Sciences, 35(4), 505–511. https://doi.org/10.4025/actascibiolsci.v35i4.18261.

    Article  Google Scholar 

  • Cunha, D. G. F., Calijuri, M. C., & Lamparelli, M. C. (2013). A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering, 60, 126–134. https://doi.org/10.1016/j.ecoleng.2013.07.058.

    Article  Google Scholar 

  • Das, A. K. (2004). Nutrient dynamics in the floodplain wetland of West Bengal. Fishery Technology, 41(2), 81–86.

    CAS  Google Scholar 

  • Das Sarkar, S., Gogoi, P., Sarkar, U. K., Das Ghosh, B., & Mishal, P. (2019). Trophic state index to assess aquatic ecosystem health. Indian Farming, 69(03), 63–66.

    Google Scholar 

  • Davis, A. M., Pearson, R. G., Brodie, J. E., & Butler, B. (2016). Review and conceptual models of agricultural impacts and water quality in waterways of the Great Barrier Reef catchment area. Marine and Freshwater Research, 68(1), 1–19. https://doi.org/10.1071/MF15301.

    Article  CAS  Google Scholar 

  • Deschenes, L. A., & Bout, D. A. V. (2000). Origin 6.0: Scientific Data Analysis and Graphing Software Origin Lab Corporation. University of Texas, Austin. Journal of the American Chemical Society, 122(39), 9567–9568. https://doi.org/10.1021/ja004761d.

    Article  CAS  Google Scholar 

  • Devi Prasad, A. G., & Siddaraju, P., (2012). Carlson’s Trophic State Index for the assessment of trophic status of two Lakes in Mandya district. Advances in Applied Science Research, 5, 2992–2996.

  • Dodds, W. K., & Cole, J. J. (2007). Expanding the concept of trophic state in aquatic ecosystems: it’s not just the autotrophs. Aquatic Sciences, 69(4), 427–439. https://doi.org/10.1007/s00027-007-0922-1.

    Article  CAS  Google Scholar 

  • El-Serehy, H. A., Abdallah, H. S., Al-Misned, F. A., Al-Farraj, S. A., & Al-Rasheid, K. A. (2018). Assessing water quality and classifying trophic status for scientifically based managing the water resources of the Lake Timsah, the lake with salinity stratification along the Suez Canal. Saudi Journal of Biological Sciences, 25, 1247–1256. https://doi.org/10.1016/j.sjbs.2018.05.022.

    Article  CAS  Google Scholar 

  • Erwin, K. L. (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management, 17, 71–84. https://doi.org/10.1007/s11273-008-9119-1.

    Article  Google Scholar 

  • FAO. (2010). The state of world fisheries and aquaculture. Rome: Food and Agriculture Organization of the United Nations 197p.

    Google Scholar 

  • Ferrati, R., Canziani, G. A., & Moreno, D. R. (2005). Estero del Ibera: hydrometeorological and hydrological characterization. Ecological Modelling, 186, 3–15.

    Article  Google Scholar 

  • Fuller, L. M., & Jodoin, R. S. (2016). Estimation of a trophic state index for selected inland lakes in Michigan, 1999–2013: U.S. Geological Survey Scientific Investigations Report 2016–5023, 16 p., https://doi.org/10.3133/sir20165023.

  • IPCC. (2014). Technical summary. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 35–39). Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2019). Climate change 2019: synthesis report. In R. K. Pachauri & L. A. Meyer (Eds.), Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change (p. 151). Geneva: IPCC.

    Google Scholar 

  • Jayasinghe, U. A. D., Amarasinghe, U. S., & De Silva, S. S. (2005). Trophic classification of non-perennial reservoirs utilized for the development of culture-based fisheries, Sri Lanka. International Review of Hydrobiology, 90(2), 209–222. https://doi.org/10.1002/iroh.200410753.

    Article  Google Scholar 

  • Jeffrey, S. T., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen, 167(2), 191–194.

  • Kashta, L. (2005). Use of water sacrophytes for evaluation of ecological status of Shkodra Lake shore. ‘LuigjGurakuqi’ University of Shkodra, Scientific Bulletin, Series of Natural Sciences 55, 104.

  • Khan, M. N., & Mohammad, F. (2014). Eutrophication: challenges and solutions. In A. A. Ansari & S. S. Gill (Eds.), Eutrophication: Causes, Consequences and Control (pp. 1–15). https://doi.org/10.1007/978-94-007-7814-6_1.

    Chapter  Google Scholar 

  • Kirilova, E., Heiri, O., Enters, D., Cremer, H., Lotter, A. F., Zolitschka, B., & Hübener, T. (2009). Climate-induced changes in the trophic status of a Central European lake. Journal of Limnology, 68(1), 71–82.

    Article  Google Scholar 

  • Knowlton, M. F., & Jones, J. R. (1997). Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands, 17(4), 468–475.

  • Kundu, N., Pal, M., & Saha, S. (2008). East Kolkata Wetlands: a resource recovery system through productive activities. In Proceedings of Taal2007: the 12th World Lake Conference 868: 881p.

  • Lamparelli, M.C., (2004). Graus de trofia em corpos d\'água do estado de São Paulo: avaliação dos métodos de monitoramento (Doctoral dissertation, Universidade de São Paulo).

  • Li, Y., Liu, H., Zheng, N., & Cao, X. (2010). Analysis of trophic status and its influence factors of different water body types in Xixi National Wetland Park, China. Procedia Environmental Sciences, 2, 768–880. https://doi.org/10.1016/j.proenv.2010.10.088.

    Article  Google Scholar 

  • Lima, P. D. F., Sousa, M. S. R., Porfírio, A. F., Almeida, B. S., Freire, R. H. F., & Santaella, S. T. (2015). Preliminary analysis on the use of trophic state indexes in a Brazilian semiarid reservoir. Acta Scientiarum - Biological Sciences, 37(3), 309–318. https://doi.org/10.4025/actascibiolsci.v37i3.27160.

    Article  CAS  Google Scholar 

  • Liu, W., Zhang, Q., & Liu, G. (2010). Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia, 644(1), 289–299. https://doi.org/10.1007/s10750-010-0151-9.

    Article  CAS  Google Scholar 

  • Mandal, S. K., & Mukherjee, A. (2016). Inventory of wetlands in Purulia district, West Bengal and their characterization as natural resources. Indian Journal of Applied Research, 6(11), 649–653.

    Google Scholar 

  • Massol, F., David, P., Gerdeaux, D., & Jarne, P. (2007). The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. Journal of Animal Ecology, 76, 538–551. https://doi.org/10.1111/j.1365-2656.2007.01226.x.

    Article  Google Scholar 

  • Naskar, M., Roy, K., Karnatak, G., Nandy, S. K., & Roy, A. (2017). Quantifying climate change induced threats to wetlandfisheries: a stakeholder-driven approach. Environment, Development and Sustainability, 1–20. https://doi.org/10.1007/s10668-017-0018-6.

  • OECD. (1982). Eutrophication of waters. Monitoring, assessment and control. 154 pp. Paris: Organisation for Economic Co-Operation and Development.

    Google Scholar 

  • Patiño, R., Dawson, D., & Van Landeghem, M. (2014). Retrospective analysis of associations between water quality and toxic blooms of golden alga (Prymnesium parvum) in Texas reservoirs: implications for understanding dispersal mechanisms and impacts of climate change. Harmful Algae, 33, 1–11. https://doi.org/10.1016/j.hal.2013.12.006.

    Article  Google Scholar 

  • Priyadarsani, L., & Abraham, T. J. (2016). Water and sediment quality characteristics of medium saline traditional shrimp culture system (bheri). Journal of Fisheries, 4(1), 309–318.

    Article  CAS  Google Scholar 

  • Qin, B., Yang, L., Chen, F., Guangwei, Z., Lu, Z., & Yiyu, C. (2006). Mechanism and control of lake eutrophication. Chinese Science Bulletin, 51(19), 2401–2412. https://doi.org/10.1007/s11434-006-2096-y.

    Article  CAS  Google Scholar 

  • Ramsar Convention Secretariat (Ed.). (2013). The Ramsar convention manual: a guide to the convention on wetlands (Ramsar, Iran, 1971) (6th ed.). Gland: Ramsar Convention Secretariat.

    Google Scholar 

  • Rangel, L. M., Silva, L. H. S., Rosa, P., Roland, F., & Huszar, V. L. M. (2012). Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia, 693(1), 13–28.

    Article  CAS  Google Scholar 

  • Ray, S., & Debnath, M. (2018). Disparity of female work participation in agricultural regions of West Bengal. Indian Journal of Social Research, 59(1), 5–27.

    Google Scholar 

  • Rusak, J. A., Tanentzap, A. J., Klug, J. L., Rose, K. C., Hendricks, S. P., Jennings, E., Laas, A., Pierson, D., Ryder, E., Smyth, R. L., White, D. S., Winslow, L. A., Adrian, R., Arvola, L., Eyto, E., Feuchtmayr, H., Honti, M., Istvánovics, V., Jones, I. D., McBride, C. G., Schmidt, S. R., Seekell, D., Staehr, P. A., & Zhu, G. (2018). Wind and trophic status explain within and among-lake variability of algal biomass. Limnology and Oceanography Letters, 3, 409–418. https://doi.org/10.1002/lol2.10093.

    Article  Google Scholar 

  • Salas, H. J., & Martino, P. (1991). A simplified phosphorus trophic state model for warm-water tropical lakes. Water Research, 25(3), 341–350.

    Article  CAS  Google Scholar 

  • Samanta, S., Debnath, D., Maitra, N., Banerjee, M., Chowdhury, A. N., Sharma, A. P., & Manna, S. K. (2015). Sediment phosphorus forms and levels in two tropical floodplain wetlands. Aquatic Ecosystem Health and Management, 18(4), 467–474.

    Article  CAS  Google Scholar 

  • Sarkar, S., Parihar, S.M. and Dutta, A. (2016). Fuzzy risk assessment modelling of East Kolkata Wetland Area: A remote sensing and GIS based approach. Environmental modelling & software, 75, 105–118.

  • Sarkar, U. K., & Borah, B. C. (2017). Flood plain wetland fisheries of India: with special reference to impact of climate change. Wetlands Ecology and Management, 26, 1–15. https://doi.org/10.1007/s11273-017-9559-6.

    Article  Google Scholar 

  • Sarkar, U. K., Roy, K., Karnatak, G., & Nandy, S. K. (2018). Adaptive climate change resilient indigenous fisheries strategies in the floodplain wetlands of West Bengal, India. Journal of Water and Climate Change, 9(3), 449–462. https://doi.org/10.2166/wcc.2018.271.

    Article  Google Scholar 

  • Sarkar, U. K., Roy, K., Naskar, M., Srivastava, P. K., Bose, A. K., Verma, V. K., Gupta, S., Nandy, S. K., Das Sarkar, S., Karnatak, G., Sudheesan, D., & Das, B. K. (2019). Minnows may be more reproductively resilient to climatic variability than anticipated: synthesis from a reproductive vulnerability assessment of Gangetic pool barbs (Puntius sophore). Ecological Indicators. https://doi.org/10.1016/j.ecolind.2019.03.037.

  • Sharma, D., & Shardendu. (2012). Detemination of Carlson trophic state index of Kabar wetland of Bihar. Proceedings of the Indian National Science Academy, 78(2), 189–196.

    CAS  Google Scholar 

  • SigmaPlot. (2008). SigmaPlot for Windows version 11.0 build 11.0.0.77, Systat Software, Inc. Bellenberg: GmbH.

    Google Scholar 

  • Silvino, R. F., & Barbosa, F. A. R. (2015). Eutrophication potential of lakes: an integrated analysis of trophic state, morphometry, land occupation, and land use. Brazilian Journal of Biology, 75(3), 607–615. https://doi.org/10.1590/1519-6984.18913.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis. Bulletin, vol 167, Fisheries Research Board of Canada, Ottawa, p 326.

  • Tang, T. J., Yang, S., Peng, Y., Yin, K., & Zou, R. (2017). Eutrophication control decision making using EFDC model for Shenzhen Reservoir, China. Water Resources, 44(2), 308–314. https://doi.org/10.1134/S0097807817020142.

    Article  CAS  Google Scholar 

  • Toledo Jr., A. P., Talarico, M., Chinez, S. J., & Agudo, E. G. (1983). The application of simplified models for the evaluation of the process of eutrophication in tropical lakes and reservoirs. In CongressoBrasileiro de EngenhariaSanitária, Camburiú (pp. 1–34). Camburiú: UFSC.

    Google Scholar 

  • Trolle, D., Hamilton, D. P., Pilditch, C. A., Duggan, I. C., & Jeppesen, E. (2011). Predicting the effects of climate change on trophic status of three morphologically varying lakes: implications for lake restoration and management. Environmental Modelling & Software, 26, 354–370. https://doi.org/10.1016/j.envsoft.2010.08.009.

    Article  Google Scholar 

  • Yang, J., Yu, X., Liu, L., Zhang, W., & Guo, P. (2012). Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environmental Science and Pollution Research International, 19(5), 1432–1442. https://doi.org/10.1007/s11356-011-0683-1.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Indian Council of Agricultural Research, New Delhi, under project National Innovations in Climate Resilient Agriculture (NICRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Kumar Sarkar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das Sarkar, S., Sarkar, U.K., Lianthuamluaia, L. et al. Pattern of the state of eutrophication in the floodplain wetlands of eastern India in context of climate change: a comparative evaluation of 27 wetlands. Environ Monit Assess 192, 183 (2020). https://doi.org/10.1007/s10661-020-8114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8114-8

Keywords

Navigation