Skip to main content
Log in

Performance evaluation of various evapotranspiration modeling scenarios based on METRIC method and climatic indexes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Evapotranspiration (ET) is one of the most important factors controlling hydrologic, agricultural, and weather cycles. It also converts a large portion of rainfall into vapor, being known as the largest water flux from the earth into the atmosphere. Since ET is affected by many factors, such as land surface characteristics and climatic conditions, it undergoes considerable spatiotemporal variations, particularly at the watershed scale. Hence, to obtain a more accurate estimation of ET, it is required to identify homogenous and uniform regions, each represented by a meteorological station. In this study, three scenarios were proposed in order to identify homogenous regions to estimate ET based on METRIC method, and the scenarios were tested in Sefidrood Watershed in the north of Iran. The first scenario included only vegetation factor with one representative station for the entire case study watershed and ignored diverse conditions affecting ET across the watershed. The second scenario incorporated not only the vegetation factor but also the altitudinal variations of the watershed. In the second scenario, the watershed was divided into two distinct altitudinal sections, each with a representative station with a specific influenced area, with ET being estimated separately for each section. Finally, the third scenario incorporated the altitudinal and climatic variations. The results indicated that the second scenario performed better than two other scenarios in ET estimation. In other words, altitude and vegetation strongly influenced spatial and temporal distributions of ET, leading to considerable variations of it in the watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abedini, M. J., & Nasseri, M. (2008). Inverse distance weighted revisited (p. 35). Beijing, China: 4th APHW.

    Google Scholar 

  • Abrishamkar, M., & Ahmadi, A. (2017). Evapotranspiration estimation using remote sensing technology based on SEBAL algorithm. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41(1), 65–76.

    Article  Google Scholar 

  • Al Zayed, I. S., Elagib, N. A., Ribbe, L., & Heinrich, J. (2016). Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: a comparative study. Agricultural Water Management, 177, 66–76.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

  • Allen, R., Waters, R., Tasumi, M., Trezza, R., & Bastiaanssen, W. (2002a). SEBAL, Surface energy balance algorithms for land, Idaho Implementation. Advanced Training and User’s manual, version 1.0.

  • Allen, R. G., Tasumi, M., Trezza, R., Waters, R., & Bastiaanssen, W. (2002b). Surface energy balance algorithm for land (SEBAL)–advanced training and user’s manual. Kimberly: Idaho Implementation.

    Google Scholar 

  • Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering, 133(4), 380–394.

    Article  Google Scholar 

  • Baeumler, N. W., Kjaersgaard, J., & Gupta, S. C. (2019). Evapotranspiration from corn, soybean, and prairie grasses using the METRIC model. Agronomy Journal, 111(2), 770–780.

    Article  Google Scholar 

  • Bastiaanssen, W. G. M. (1995). Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates. SC-DLO.

  • Bastiaanssen, W. G. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of hydrology, 229(1–2), 87–100.

    Article  Google Scholar 

  • Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998a). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198–212.

    Article  Google Scholar 

  • Bastiaanssen, W. G., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., & Van der Wal, T. (1998b). A remote sensing surface energy balance algorithm for land (SEBAL). Part 2: Validation. Journal of hydrology, 212, 213–229.

    Article  Google Scholar 

  • Bayat, B., Nasseri, M., & Naser, G. (2014). Improving Bayesian maximum entropy and ordinary Kriging methods for estimating precipitations in a large watershed: a new cluster-based approach. Canadian Journal of Earth Sciences, 51(1), 43–55.

    Article  Google Scholar 

  • Çetin, S., & Köksal, E. S. (2018). Potential use of remote sensing techniques in evapotranspiration estimations at watershed level. Environmental monitoring and assessment, 190(10), 601.

    Article  Google Scholar 

  • Corbari, C., Mancini, M., Li, J., & Su, Z. (2015). Can satellite land surface temperature data be used similarly to river discharge measurements for distributed hydrological model calibration. Hydrological sciences journal, 60(2), 202–217.

    Article  Google Scholar 

  • Courault, D., Seguin, B., & Olioso, A. (2003). Review to estimate evapotranspiration from remote sensing data: some examples from the simplified relationship to the use of mesoscale atmospheric models. In ICID workshop on remote sensing of ET for large regions (Vol. 17, pp. 1–18).

    Google Scholar 

  • Elkatoury, A., Alazba, A. A., & Mossad, A. (2020). Estimating evapotranspiration using coupled remote sensing and three SEB models in an arid region. Environmental Processes, 7(1), 109–133.

    Article  Google Scholar 

  • Hassaballa, A. A., Matori, A. N., Al-Gaadi, K. A., Tola, E. H., & Madugundu, R. (2017). Sub-pixel analysis to enhance the accuracy of evapotranspiration determined using MODIS images. International Journal of Agricultural and Biological Engineering, 10(2), 103–113.

    Google Scholar 

  • Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., & Dolman, A. J. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954.

    Article  CAS  Google Scholar 

  • Kunnath-Poovakka, A., Ryu, D., Renzullo, L. J., & George, B. (2016). The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for stream flow prediction. Journal of hydrology, 535, 509–524.

    Article  Google Scholar 

  • Kustas, W. P., & Norman, J. M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 94(1), 13–29.

    Article  Google Scholar 

  • Lian, J., & Huang, M. (2016). Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region. Agricultural Water Management, 165, 153–162.

    Article  Google Scholar 

  • Lima, J. G., Sánchez, J. M., Piqueras, J. G., Espínola Sobrinho, J., Viana, P. C., & Alves, A. D. S. (2020). Evapotranspiration of sorghum from the energy balance by METRIC and STSEB. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(1), 24–30.

    Article  Google Scholar 

  • Mahab Ghodss Consulting Engineers. (2013a). Updating the water master plan in the basins of Aras (Talesh, Anzali lagoon), Big Sefidrood, (Sefidrood-Haraz), (Haraz-Gharehsou), (Gorganrood-Gharehsou), Atrak, Urmia, the report of agricultural studies and production economics.

  • Mahab Ghodss Consulting Engineers. (2013b). Updating the water master plan in the basins of Aras (Talesh, Anzali lagoon), Big Sefidrood, (Sefidrood-Haraz), (Haraz-Gharehsou), (Gorganrood-Gharehsou), Atrak, Urmia, the report of surface water resources studies.

  • Modabberi, H., Mirlatifi, M., & Gholami, M. A. (2014). Determination of evapotranspiration and crop coefficient of two rice types in Mordab Plain (Gilan Province). JWSS., 18(67), 95–106.

    Google Scholar 

  • Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3–4), 263–293.

    Article  Google Scholar 

  • Pirmoradian, N., Zekri, F., Rezaei, M., & Abdollahi, V. (2013). Derivation of crop coefficients of three rice varieties based on reference evapotranspiration estimation in Rasht region. Cereal Research Journal, 3(2), 95–106.

    Google Scholar 

  • Praene, J. P., Malet-Damour, B., Radanielina, M. H., Fontaine, L., & Riviere, G. (2019). GIS-based approach to identify climatic zoning: a hierarchical clustering on principal component analysis. Building and Environment, 164, 106330.

    Article  Google Scholar 

  • Reyes-González, A., Kjaersgaard, J., Trooien, T., Hay, C., & Ahiablame, L. (2017, 2017). Comparative Analysis of METRIC model and atmometer methods for estimating actual evapotranspiration. International Journal of Agronomy.

  • Ruhoff, A. L., Paz, A. R., Collischonn, W., Aragao, L. E., Rocha, H. R., & Malhi, Y. S. (2012). A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas. Remote Sensing, 4(3), 703–725.

    Article  Google Scholar 

  • Saray, M. H., Eslamian, S. S., Klöve, B., & Gohari, A. (2019). Regionalization of potential evapotranspiration using a modified region of influence. Theoretical and Applied Climatology, 1–13.

  • Sathiaraj, D., Huang, X., & Chen, J. (2019). Predicting climate types for the Continental United States using unsupervised clustering techniques. Environmetrics, 30(4), e2524.

    Article  Google Scholar 

  • Su, Z. B. (2002). A surface energy balance system (SEBS) for estimation of turbulent heat fluxes from point to continental scale. In Spectra Workshop (Vol. 474, p. 23).

    Google Scholar 

  • Sun, Z., Wang, Q., Matsushita, B., Fukushima, T., Ouyang, Z., & Watanabe, M. (2009). Development of a simple remote sensing evapotranspiration model (Sim-ReSET): algorithm and model test. Journal of Hydrology, 376(3–4), 476–485.

    Article  Google Scholar 

  • Taheri, M., Emadzadeh, M., Gholizadeh, M., Tajrishi, M., Ahmadi, M., & Moradi, M. (2019). Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin. Agricultural Water Management, 213, 782–791.

    Article  Google Scholar 

  • Yin, J., Qiu, X., Li, S., Shi, G., & Liu, H. (2020). Estimation of evapotranspiration through an improved daily global solar radiation in SEBAL model: a case study of the middle Heihe River Basin. Hydrology and Earth System Sciences Discussions, 1–32.

  • Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3(6), 834–853.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried as part of the research project No. 95/32166/720 funded by the Iran Ministry of Energy for revising the national water balance estimation guidelines. The technical supports of the Iran Ministry of Energy and Iran Water Resources Management Company are hereby acknowledged.

Funding

This study was carried out in the Water Institute of the University of Tehran with partial financial support from Iran Ministry of Energy. The financial supports of the Iran Ministry of Energy and Iran Water Resources Management Company are hereby received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Nasseri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M., Gholizadeh, M., Nasseri, M. et al. Performance evaluation of various evapotranspiration modeling scenarios based on METRIC method and climatic indexes. Environ Monit Assess 193, 111 (2021). https://doi.org/10.1007/s10661-020-08840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08840-y

Keywords

Navigation