Skip to main content
Log in

Phytoplankton diversity in relation to physicochemical attributes and water quality of Mandakini River, Garhwal Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoplankton are important biological indicators of water quality. This current study assessed the physicochemical parameters and phytoplankton diversity of Mandakini River, an important tributary of the River Ganga. Water and phytoplankton samples were collected from three sampling sites located at three different altitudes for a period of twelve months (July 2018–June 2019). Water samples were analyzed for fourteen important physicochemical parameters along with the identification of phytoplankton by following the standard methodology. A total of 21 species of phytoplankton under three major groups Bacillariophyceae (Cymbella aequalis, Diatoma vulgaris, Fragilaria arcus, Frustulia rhomboids, Gomphonema geminatum, Navicula confervacea, Nitzchia diversa, and Synedra ulna); Chlorophyceae (Volvox sp., Cladophora glomerata, Closterium longissima, Hydrodictyon sp., Microspora amoena, Spirogyra sp., Oedogonium sp., Ulothrix zonata, and Zygnema cylindrospermum); and Cyanophyceae (Anabaena ambigua, Chlorococcum humicola, Nodularia sp., and Oscillatoria sancta) were observed and recorded during the study period. Site S3 (Rudraprayag) had the highest species diversity. From this study, the effect of physicochemical parameters on the diversity and density of phytoplankton was observed. It also includes the overall significance of phytoplankton and physicochemical parameters to the water quality of the Mandakini River along with the key factors that were responsible for the degradation of water quality. The current study also provides baseline information to future researchers working in a similar discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCA:

Canonical correspondence analysis

WHO:

World Health Organization

BIS:

Bureau of Indian Standards

CPCB:

Central Pollution Control Board

ICMR:

Indian Council of Medical Research

TDS:

Total dissolved solids

DO:

Dissolved oxygen

Free CO2 :

Free carbon dioxide

A.T.:

Air temperature

W.T.:

Water temperature

Turb.:

Turbidity

W.V.:

Water velocity

T.P.:

Transparency

E.C.:

Electrical conductivity

Alkal.:

Alkalinity

T.H.:

Total hardness

Cl- :

Chlorides

PO4 3- :

Phosphates

NO3 - :

Nitrates

SO4 2-:

Sulfates

References

  • Abell, R., Vigerstol, K., Higgins, J., Kang, S., Karres, N., Lehner, B., Sridhar, A., & Chapin, E. (2019). Freshwater biodiversity conservation through source water protection: Quantifying the potential and addressing the challenges. Special Issue: Freshwater Conservation in the Anthropocene. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(7), 1022–1038.

    Google Scholar 

  • Abrantes, N., Antunes, S. C., Pereira, M. J., & Goncalves, F. (2006). Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica., 29, 54–64.

    Google Scholar 

  • APHA. (2012). Standard methods for examination of water & wastewater (23rd ed.). New York: American Public Health association.

    Google Scholar 

  • Awasthi, A., Dubey, A., Singh, R., Singh, U. P., & Tripathi, S. (2018). Assessment of water quality in Mandakini River at Chitrakoot. Research Journal of Science and Technology, 10(3), 223–224.

    Google Scholar 

  • Bandyopadhyay, J. (2013). Securing the Himalayas as the Water Tower of Asia: An environmental perspective. Asia Policy, 16, 45–50.

    Google Scholar 

  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology letters, 15(4), 365–377.

    Google Scholar 

  • Benthwal, A., Bahuguna, A., & Chandramauli, A. (2018). Evaluation of water purity in Mandakini River and study of atmospheric analysis of Kedarnath Valley. Indian Journal of Applied Research, 8(9), 33–36.

    Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2, 161–173.

    Google Scholar 

  • Bisht, S., Sharma, R. C., Rawat, S., & Kumar, R. (2018). Physico–chemical attributes and bacterial diversity of river water at Rudraprayag, Garhwal Himalaya. MOJ Ecology and Environmental Sciences, 3(4), 277–282.

    Google Scholar 

  • Bora, M., & Goswami, D. C. (2017). Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India. Applied Water Science, 7, 3125–3135.

    Google Scholar 

  • Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., Ctyrlikova, M., Galassi, D. M. P., Hajek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., Hamilton, P. B., Kubecka, J., Segadelli, S., & Znachor, P. (2020). Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water, 12(1), 1–260.

    Google Scholar 

  • Chadwick, A. J., Borthwick, M., & Morfett, J. C. (2004). Hydraulics in civil and environmental engineering (4th ed.pp. 1–644). London: Spon Press.

    Google Scholar 

  • Chaudhary, S., Sharma, R. C., & Kumar, R. (2018). Physicochemical and microbiological assessment of surface water quality of a Himalayan Wetland Deoria Tal, India. Journal of Civil and Environmental Research, 10(5), 59–75.

    Google Scholar 

  • Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013). Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge, 4(4), 1–10.

    Google Scholar 

  • Clausen, B., & Biggs, B. (1997). Relationships between benthic biota and hydrological indices in New Zealand streams. Freshwater Biology, 38, 327–342.

    Google Scholar 

  • Couperthwaite, J. S. (1997). Downstream change in channel hydraulics along the River Severn, UK. Ph.D. Thesis, University of Birmingham, 1-290.

  • Davies-Colley, R. J., & Smith, D. G. (2007). Turbidity, suspended sediment, and water clarity: A review. Journal of the American Water Resources Association, 37(5), 1085–1101.

    Google Scholar 

  • Dhakar, K., & Pandey, A. (2020). Microbial Ecology from the Himalayan cryosphere perspective. Microorganisms, 8(2), 257.

    Google Scholar 

  • Dlamini, W. M. (2016). Analysis of deforestation patterns and drivers in Swaziland using efficient Bayesian multivariate classifiers model. Earth Systems and Environment, 2, 1–14.

    Google Scholar 

  • Eliku, T., & Leta, S. (2018). Spatial and seasonal variation in physicochemical parameters and heavy metals in Awash River, Ethiopia. Applied Water Science, 8, 177.

    Google Scholar 

  • Fabricus, D. M. A., Maidana, N., Gomez, N., & Sabater, S. (2003). Distribution patterns of benthic diatoms in a Pampean River exposed to seasonal floods: The Cuarto River (Argentina). Biodiversity and Conservation, 12, 2443–2454.

    Google Scholar 

  • Ferrarese, S., Apadula, F., Bertiglia, F., Cassardo, C., Ferrero, A., Fialdini, L., Francone, C., Heltai, D., Lanza, A., Longhetto, A., Manfrin, M., Richiardone, R., & Vannini, C. (2015). Inspection of high-concentration CO2 events at the Plateau Rosa Alpine station. Atmospheric Pollution Research, 6(3), 415–427.

    CAS  Google Scholar 

  • Goswami, G., & Singh, D. (2018). Water quality and function of Mandakini River ecosystem of Central Himalaya. International Journal of Biosciences, 12(6), 102–116.

    CAS  Google Scholar 

  • Gupta, A. K., & Mehrotra, R. S. (1986). Studies on seasonal variation in pH and Dissolved oxygen content in Sannihit Sarovar Kurukshetra. Geo Journal, 13, 276–278.

    Google Scholar 

  • Hasan, M. K., Shahriar, A., & Jim, K. U. (2019). Water pollution in Bangladesh and its impact on public health. Heliyon, 5(8), e02145.

    Google Scholar 

  • Heinrichs, M. E., Mori, C., & Dlugosch, L. (2020). Complex interactions between aquatic organisms and their chemical environment elucidated from different perspectives. In S. Jungblut, V. Liebich, & M. Bode-Dalby (Eds.), YOUMARES 9 - The Oceans: Our Research, Our Future. Springer. https://doi.org/10.1007/978-3-030-20389-4_15.

  • Hossain, M. R. A., Pramanik, M. M. H., & Hasan, M. M. (2017). Diversity indices of plankton communities in the River Meghna of Bangladesh. International Journal of Fisheries and Aquatic Studies, 5(3), 330–334.

    Google Scholar 

  • Ishaq, F., & Khan, A. (2013). Comparative assessment of physico-chemical conditions and plankton diversity of River Tons and Asan in Dehradun District of Uttarakhand. Advances in Applied Science Research, 4(2), 342–355.

    CAS  Google Scholar 

  • Joshi, V., Naithani, A., & Negi, G. C. S. (2001). Study of landslides in Mandakini river valley, Garhwal Himalaya, India. GAIA, 16, 87–95.

    Google Scholar 

  • Joshi, R. K., Satyal, P., & Setzer, W. N. (2016). Himalayan aromatic medicinal plants: A review of their ethnopharmacology, volatile phytochemistry, and biological activities. Medicines, 3(1), 6.

    Google Scholar 

  • Kaden, D. A., Mandin, C., Nielsen, G. D., & Wolkoff, P. (2010). Formaldehyde. In WHO Guidelines for Indoor Air Quality: Selected Pollutants (pp. 1–3). Geneva: World Health Organization.

    Google Scholar 

  • Kansal, A., Siddiqui, N. A., & Gautam, A. (2011). Deterioration of water quality of some eco-efficient Himalayan Rivers in India. International Journal for Environmental Rehabilitation and Conservation, 2(1), 29–49.

    Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72, 301–309.

    CAS  Google Scholar 

  • Kitchener, G. B. B., Wainwright, J., & Parsons, A. J. (2017). A review of the principles of turbidity measurement. Progress in Physical Geography, 41(5), 620–642.

    Google Scholar 

  • Kleinschroth, F., & Healey, J. R. (2017). Impacts of logging roads on tropical forests. Biotropica, 49(5), 620–635.

    Google Scholar 

  • Kumar, R., & Sharma, R. C. (2018). Assessment of surface water quality of Sacred Lake Badhani Tal, India. International Journal of Fisheries and Aquatic Sciences, 6(1), 177–187.

    Google Scholar 

  • Kumar, R., & Sharma, R. C. (2019). Assessment of the water quality of glacier-fed lake Neel Tal of Garhwal Himalaya, India. Water Science, 33(1), 22–28.

    Google Scholar 

  • Kumar, A., Bisht, B. S., Joshi, V. D., Singh, A. K., & Talwar, A. (2010). Physical, chemical and bacteriological study of water from rivers of Uttarakhand. Journal of Human Ecology, 32(3), 169–173.

    Google Scholar 

  • Kumar, R., Singh, S., & Sharma, R. C. (2018). Application of WQI for assessment of water quality of high altitude lake Dodi Tal, Garhwal Himalaya, India. Sustainable Water Resources Management, 5, 133–142.

    Google Scholar 

  • Kumari, R., & Sharma, R. C. (2018). Seasonal effects on diversity of macroinvertebrates in Himalayan Lake Prashar, Himachal Pradesh, India. Environmental Sustainability, 1, 449–459.

    Google Scholar 

  • Liu, C., Liu, L., & Shen, H. (2010). Seasonal variations of phytoplankton community structure in relation to physico-chemical factors in Lake Baiyangdian, China. Procedia Environmental Sciences, 2, 1622–1631.

    Google Scholar 

  • Mahabaleshwara, H., & Nagabhushan, H. M. (2014). A study on soil erosion and its impacts on floods and sedimentation. International Journal of Research in Engineering and Technology, 3(3), 443–451.

    Google Scholar 

  • Matta, G., Srivastava, S., Pandey, R. R., & Saini, K. K. (2015). Assessment of physicochemical characteristics of Ganga Canal water quality in Uttarakhand. Environment Development and Sustainability, 19, 419–431.

    Google Scholar 

  • Mukherji, A., Molden, D., Nepal, S., Rasul, G., & Wagnon, P. (2015). Himalayan waters at the crossroads: Issues and challenges. International Journal of Water Resources Development, 31(2), 151–160.

    Google Scholar 

  • Naiman, R. J., & Anderson, E. C. (1997). Streams and rivers: their physical and biological variability. In P. K. Schoonmaker, B. von Hagen, & E. C. Wolf (Eds.), The Rain Forests of Home: Profile of a North American Bioregion (pp. 131–148). Washington, D.C.: Island Press.

    Google Scholar 

  • Nautiyal, P., & Bhatt, J. P. (1997). Altitudinal variation in phytobenthos density and its component in the cold water mountain river Alaknanda-Ganga. Phykos, 36, 81–88.

    Google Scholar 

  • Naveen, B. P., Sumalatha, J., & Malik, R. K. (2018). A study on contamination of ground and surface water bodies by leachate leakage from a landfill in Bangalore, India. International Journal of Geo-Engineering, 9, 27.

    Google Scholar 

  • Omer, N. H. (2019). Water quality parameters, Water Quality - Science, Assessments and Policy, Kevin Summers, IntechOpen. https://doi.org/10.5772/intechopen.89657.

  • Patang, F., Soegianto, A., & Hariyanto, S. (2018). Benthic macroinvertebrates diversity as bioindicator of water quality of some rivers in East Kalimantan. Indonesia. International Journal of Ecology, 2018, 1–11. https://doi.org/10.1155/2018/5129421.

    Article  Google Scholar 

  • Poor, E. E., Jati, V. I. M., Imron, M. A., & Kelly, M. J. (2019). The road to deforestation: Edge effects in an endemic ecosystem in Sumatra, Indonesia. PLoS One, 14(7), e0217540.

    CAS  Google Scholar 

  • Rana, K. S., Sharma, R. C., Tiwari, V., & Kumar, R. (2018). Assessment of surface water quality of the Himalayan Lake Beni Tal, India. Current Research in Hydrology and Water Resources, 1, 1–11.

    Google Scholar 

  • Rawat, M. S., Uniyal, D. P., Dobhal, R., Joshi, V., Rawat, B. S., Bartwal, A., Singh, D., & Aswal, A. (2015). Study of landslide hazard zonation in Mandakini Valley, Rudraprayag District, Uttarakhand, using remote sensing and GIS. Current Science, 109(1), 158–170.

    Google Scholar 

  • Rawat, S., Prasad, C., Sharma, R. C., Bisht, S., & Kumar, R. (2018). Physicochemical attributes and bacterial diversity of river water at Devprayag, Garhwal Himalaya, India. Journal of Aquatic Research and Marine Sciences, 1(1), 1–6.

    Google Scholar 

  • Rawat, A., Gulati, G., Maithani, R., Sathyakumar, S., & Uniyal, V. P. (2020). Bioassessment of Mandakini River with the help of aquatic macroinvertebrates in the vicinity of Kedarnath Wildlife Sanctuary. Applied Water Science, 10, 36.

    CAS  Google Scholar 

  • Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2018). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873.

    Google Scholar 

  • Scott, C. A., Zhang, F., Mukherji, A., Immerzeel, W., Mustafa, D., & Bharati, L. (2019). Water in the Hindu Kush Himalaya. In P. Wester, A. Mishra, A. Mukherji, & A. Shrestha (Eds.), The Hindu Kush Himalaya Assessment. Cham: Springer. https://doi.org/10.1007/978-3-319-92288-1_8.

    Chapter  Google Scholar 

  • Seth, R., Mohan, M., Singh, P., Singh, R., Dobhal, R., Singh, K. P., & Gupta, S. (2014). Water quality evaluation of Himalayan Rivers of Kumaun region, Uttarakhand, India. Applied Water Science, 6, 137–147.

    Google Scholar 

  • Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7, 1043–1067.

    CAS  Google Scholar 

  • Sharma, R. C., & Kumar, R. (2017). Water quality assessment of Sacred Glacial Lake Satopanth of Garhwal Himalaya, India. Applied Water Science, 7(8), 4757–4764.

    CAS  Google Scholar 

  • Sharma, R. C., Singh, N., & Chauhan, A. (2016). The influence of physico-chemical parameters on phytoplankton distribution in a head water stream of Garhwal Himalayas: A case study. The Egyptian Journal of Aquatic Research, 42(1), 11–21.

    Google Scholar 

  • Sharma, N., Kumar, R., & Sharma, R. C. (2018). Microbiological water quality of the sacred River Bhagirathi, Garhwal Himalaya, India. Journal of Water, Sanitation and Hygiene for Development, 8(4), 698–706.

    Google Scholar 

  • Tamta, M. K., & Joshi, J. (2019). Geomorphic processes, topographical changes and disasters: A study from the Mandakini river basin, Uttarakhand. International Journal of Basic and Applied Research, 9(6), 887–898.

    Google Scholar 

  • Ter Braak, C., & Verdonschot, P. (1995). Canonical correspondence analysis and relate multivariate methods in aquatic ecology. Aquatic Sciences, 57, 255–289.

    Google Scholar 

  • Tsering, T., Wahed, M. S. M. A., Iftekhar, S., & Sillanpaa, M. (2019). Major ion chemistry of the Teesta River in Sikkim Himalaya, India: Chemical weathering and assessment of water quality. Journal of Hydrology: Regional Studies, 24, 100612.

    Google Scholar 

  • United Nations Convention on Biological Diversity (1992) 31 ILM 818 entered into force on Dec. 29, 1993. http://www.cbd.int/doc/legal/cbd-un-en.pdf

  • Vinson, M. R., & Hawkins, C. P. (1998). Biodiversity of stream insects: Variation at local, basin, and regional scales. Annual Review of Entomology, 43, 271–293.

    CAS  Google Scholar 

  • Washington, H. G. (1984). Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Research, 18(6), 653–694.

    Google Scholar 

  • Wetzel, R. G. (1991). On the teaching of limnology: Need for a national initiative. Limnology and Oceanography, 3, 213–215.

    Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (1991). Limnological analysis (2nd ed.). New York: Springer Verlag.

  • Wetzel, R. G. (2000). Limnology – Lake and river ecosystems (3rd ed.). Academic Press.

  • Wetzel, R. G., & Likens, G. E. (2000). Chapter: Nitrogen, Phosphorus, and Other Nutrients. In Limnological Analyses (3rd ed., pp. 85–113). New York: Springer.

    Google Scholar 

  • Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 365(1549), 2093–2106.

    Google Scholar 

  • Wu, N., Qu, Y., Guse, B., Makarevičiūtė, K., To, S., Riis, T., & Fohrer, N. (2018). Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae. Ecology and Evolution, 8(5), 2947–2961.

    Google Scholar 

  • Xing, W., Yin, M., Lv, Q., Hu, Y., Liu, C., & Zhang, J. (2014). Oxygen solubility, diffusion coefficient, and solution viscosity. Reduction Electrocatalysts, 1–31.

  • Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., & Wilkes, A. (2009). The Melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23(3), 520–530.

    CAS  Google Scholar 

  • Xu, J., Badola, R., Chettri, N., Chaudhary, R. P., Zomer, R., Pokhrel, B., Hussain, S. A., Pradhan, S., & Pradhan, R. (2019). Sustaining biodiversity and ecosystem services in the Hindu Kush Himalaya. In P. Wester, A. Mishra, A. Mukherji, & A. Shrestha (Eds.), The Hindu Kush Himalaya Assessment. Springer. https://doi.org/10.1007/978-3-319-92288-1_5.

  • Yang, X. E., Wu, X., Hao, H. L., & He, Z. L. (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B, 9(3), 197–209.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors (Rama Kumari, Chandi Prasad, Stanzin Namtak, Akash Deep) thankfully acknowledge the fellowship given by the University Grant Commission, New Delhi, through Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India, for undertaking the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumari, R., Prasad, C. et al. Phytoplankton diversity in relation to physicochemical attributes and water quality of Mandakini River, Garhwal Himalaya. Environ Monit Assess 192, 799 (2020). https://doi.org/10.1007/s10661-020-08768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08768-3

Keywords

Navigation