Skip to main content

Advertisement

Log in

Trophic state and limiting nutrient evaluations using trophic state/level index methods: a case study of Borçka Dam Lake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The relationships between nutrients and the trophic state of Borçka dam reservoir in the Çoruh River Basin, which is located in the Eastern Black Sea region of Turkey, were evaluated using the trophic state index (TSI), trophic level index (TLI), and statistical analysis. The samples data were analyzed for chlorophyll-a (Chl-a), total phosphorus (TP), total nitrogen (TN), and secchi disk (SD). In the evaluation, according to the TSI‚ TLI and Turkish legislation, the reservoir is assessed as mesotrophic in terms of TP, TN data of the water quality. The measurement results of these parameters are higher at the depth points and lower on the surface. The Chl-a parameter is evaluated mesotrophic with 2013 data at the depth, and oligotrophic with 2016 data. The result of TSI (Chl-a) < TSI (SD), TSI (Chl-a) < TSI (TP), and TSI (TN) indicate non-algal turbidity. At the same time, this was verified by calculating the non-algal turbidity coefficient (Kna). It is observed that there is a low correlation between Chl-a and Kna, however a low correlation with TN, and a high correlation with TP. Non-algal particles in the dam lake may occur due to surface runoff and soil erosion from the agricultural area and human settlements. Regression analysis was conducted to determine the relationship between nutrients and Chl-a. The relationship of Chl-a concentration with TN, TP, and TN/TP concentrations is weak. This supports that there are inorganic suspended solids (non-volatile suspended solids) with high underwater light availability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abell, J. M., Özkundakci, D., Hamilton, D. P., Van Dam-Bates, P., & McDowell, R. W. (2019). Quantifying the extent of anthropogenic eutrophication of lakes at a national scale in New Zealand. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b03120.

  • Adamovich, B. V., Medvinsky, A. B., Nikitina, L. V., Radchikova, N. P., Mikheyeva, T. M., Kovalevskaya, R. Z., et al. (2019). Relations between variations in the lake bacterioplankton abundance and the lake trophic state: evidence from the 20-year monitoring. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.09.049.

  • Alberto, W. D., María del Pilar, D., María Valeria, A., Fabiana, P. S., Cecilia, H. A., & María de los Ángeles, B. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. a case study:: Suquı́a River Basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894. https://doi.org/10.1016/S0043-1354(00)00592-3.

    Article  CAS  Google Scholar 

  • An, K. G., & Park, S. S. (2002). Indirect influence of the summer monsoon on chlorophyll-total phosphorus models in reservoirs: a case study. Ecological Modelling. https://doi.org/10.1016/S0304-3800(02)00020-0.

  • Atique, U., & An, K. (2019). Reservoir water quality assessment based on chemical parameters and the chlorophyll dynamics in relation to nutrient regime, 28(3), 1043–1061. https://doi.org/10.15244/pjoes/85675

  • Atique, U., & An, K. G. (2020). Landscape heterogeneity impacts water chemistry, nutrient regime, organic matter and chlorophyll dynamics in agricultural reservoirs. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2019.105813.

  • Baban, S. M. J. (1993). Detecting water quality parameters in the norfolk broads, U.K., using landsat imagery. International Journal of Remote Sensing. https://doi.org/10.1080/01431169308953955.

  • Bilgin, A. (2015). Evaluation Of Borcka Reservoir water quality by a multivariate statistical method. CBU J. of Sci, 11(2), 287–293.

    Article  Google Scholar 

  • Burns, N. M., Rutherford, J. C., & Clayton, J. S. (1999). A monitoring and classification system for New Zealand Lakes and reservoirs. Lake and Reservoir Management. https://doi.org/10.1080/07438149909354122.

  • Burns, N, Bryers, G., & Bowman, E. (2000). Protocol for monitoring lake trophic levels and assessing trends in trophic state. Client Report: 99/2 prepared for Ministry for the Environment.

  • Burns, N., McIntosh, J., & Scholes, P. (2005). Strategies for managing the lakes of the rotorua district, New Zealand. Lake and Reservoir Management. https://doi.org/10.1080/07438140509354413.

  • Calderon, M. S., & An, K. G. (2016). Spatio-temporal variabilities of nutrients and chlorophyll, and the trophic state index deviations on the relation of nutrients-chlorophyll–light availability. Journal of Ecology and Environment. https://doi.org/10.5141/ecoenv.2016.004.

  • Canfield, D. E. (1983). Prediction Of chlorophyll A concentrations in Florida Lakes: the importance of phosphorus and nitrogen. JAWRA Journal of the American Water Resources Association. https://doi.org/10.1111/j.1752-1688.1983.tb05323.x.

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography. https://doi.org/10.4319/lo.1977.22.2.0361.

  • Carlson, R. E., & Havens, K. E. (2005). Simple graphical methods for the interpretation of relationships between trophic state variables. Lake and Reservoir Management. https://doi.org/10.1080/07438140509354418.

  • Castilla, E. P., Cunha, D. G. F., Lee, F. W. F., Loiselle, S., Ho, K. C., & Hall, C. (2015). Quantification of phytoplankton bloom dynamics by citizen scientists in urban and peri-urban environments. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4912-9.

  • Chalar, G., Arocena, R., Pacheco, J. P., & Fabián, D. (2011). Trophic assessment of streams in Uruguay: a trophic state index for benthic invertebrates (TSI-BI). Ecological Indicators. https://doi.org/10.1016/j.ecolind.2010.06.004.

  • Choi, J. W., Han, J. H., Park, C. S., Ko, D. G., Kang, H. I., Kim, J. Y., et al. (2015). Nutrients and sestonic chlorophyll dynamics in Asian lotic ecosystems and ecological stream health in relation to land-use patterns and water chemistry. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2015.03.006.

  • Cunha, D. G. F., Grull, D., Damato, M., Blum, J. R. C., Lutti, J. E. I., Eiger, S., & Mancuso, P. C. S. (2011). Trophic state evolution in a subtropical reservoir over 34 years in response to different management procedures. Water Science and Technology, 64(12), 2338–2344. https://doi.org/10.2166/wst.2011.826.

    Article  CAS  Google Scholar 

  • Cunha, D. G. F., Calijuri, M. d. C., & Lamparelli, M. C. (2013). A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering, 60, 126–134.

    Article  Google Scholar 

  • Dejenie, T., Declerck, S. A. J., Asmelash, T., Risch, S., Mergeay, J., De Bie, T., & De Meester, L. (2012). Cladoceran community composition in tropical semi-arid highland reservoirs in Tigray (Northern Ethiopia): a metacommunity perspective applied to young reservoirs. Limnologica. https://doi.org/10.1016/j.limno.2011.09.008.

  • Ding, J., Jiang, Y., Fu, L., Liu, Q., Peng, Q., & Kang, M. (2015). Impacts of land use on surface water quality in a subtropical river basin: a case study of the dongjiang river basin, Southeastern China. Water (Switzerland). https://doi.org/10.3390/w7084427.

  • Dodds, W. K., & Cole, J. J. (2007). Expanding the concept of trophic state in aquatic ecosystems: it’s not just the autotrophs. Aquatic Sciences. https://doi.org/10.1007/s00027-007-0922-1.

  • Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research. https://doi.org/10.1016/S0043-1354(97)00370-9.

  • Downing, J. A., & McCauley, E. (1992). The nitrogen: phosphorus relationship in lakes. Limnology and Oceanography. https://doi.org/10.4319/lo.1992.37.5.0936.

  • EPA. (2007). Environmental Protection Agency, 2007, Aquatic biodiversity—Carlson’s Trophic State Index.

  • Fernández, C., Parodi, E. R., & Cáceres, E. J. (2009). Limnological characteristics and trophic state of Paso de las Piedras Reservoir: an inland reservoir in Argentina. Lakes and Reservoirs: Research and Management. https://doi.org/10.1111/j.1440-1770.2009.00393.x.

  • Galvez-Cloutier, R., & Sanchez, M. (2007). Trophic status evaluation for 154 lakes in Quebec, Canada: monitoring and recommendations. Water Quality Research Journal of Canada. https://doi.org/10.2166/wqrj.2007.028.

  • Ganju, N. K., Miselis, J. L., & Aretxabaleta, A. L. (2014). Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary. Biogeosciences. https://doi.org/10.5194/bg-11-7193-2014.

  • Ginn, B. K. (2011). Distribution and limnological drivers of submerged aquatic plant communities in Lake Simcoe (Ontario, Canada): utility of macrophytes as bioindicators of lake trophic status. Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2010.05.004.

  • Gubiani, É. A., Angelini, R., Vieira, L. C. G., Gomes, L. C., & Agostinho, A. A. (2011). Trophic models in Neotropical reservoirs: testing hypotheses on the relationship between aging and maturity. Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2011.10.007.

  • Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography. https://doi.org/10.4319/lo.2000.45.6.1213.

  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Upper Saddle River: Pearson Prentice Hall.

  • Halstead, J. A., Kliman, S., Berheide, C. W., Chaucer, A., & Cock-Esteb, A. (2014). Urban stream syndrome in a small, lightly developed watershed: a statistical analysis of water chemistry parameters, land use patterns, and natural sources. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-014-3625-9.

  • Hara, J., Atique, U., & An, K. G. (2020). Multiyear links between water chemistry, algal chlorophyll, drought-flood regime, and nutrient enrichment in a morphologically complex reservoir. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17093139.

  • Havens, K. E. (1995). Secondary nitrogen limitation in a subtropical lake impacted by non-point source agricultural pollution. Environmental Pollution. https://doi.org/10.1016/0269-7491(94)00076-P.

  • Huber, W. C., Brezonik, P., Heaney, J. P., Dickinson, R. E., & Preston, S. D. (1982). A classification of Florida lakes. Final Report. Tallahassee: Florida Department of Environmental Regulation.

    Google Scholar 

  • Hunt, R. J., & Matveev, V. F. (2005). The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir: an enclosure study. Limnologica. https://doi.org/10.1016/j.limno.2005.01.004.

  • Jacoby, J. (2014). Pollutant effects in freshwater. Pollutant Effects in Freshwater. https://doi.org/10.1201/9781482265118.

  • Jarosiewicz, A., Ficek, D., & Zapadka, T. (2012). Eutrophication parameters and Carlson-type trophic state indices in selected Pomeranian lakes. Limnological Review. https://doi.org/10.2478/v10194-011-0023-3.

  • Karadžić, V., Subakov-Simić, G., Krizmanić, J., & Natić, D. (2010). Phytoplankton and eutrophication development in the water supply reservoirs Garaši and Bukulja (Serbia). Desalination. https://doi.org/10.1016/j.desal.2010.01.009.

  • Kirk, J. T. O. (2010). Light and photosynthesis in aquatic ecosystems, third edition. Light and Photosynthesis in Aquatic Ecosystems, third edition. https://doi.org/10.1017/CBO9781139168212.

  • Kratzer, C. R., & Brezonik, P. L. (1981). A Carlson-type trophic state index for nitrogen in Florida Lakes. JAWRA Journal of the American Water Resources Association. https://doi.org/10.1111/j.1752-1688.1981.tb01282.x.

  • Lambou, V. W., Taylor, W. D., Hern, S. C., & Williams, L. R. (1983). Comparisons of trophic state measurements. Water Research. https://doi.org/10.1016/0043-1354(83)90020-9.

  • Lee, J. H., Kim, J. M., Kim, D. S., Hwang, S. J., & An, K. G. (2010). Nutrients and chlorophyll-a dynamics in a temperate reservoir influenced by Asian monsoon along with in situ nutrient enrichment bioassays. Limnology. https://doi.org/10.1007/s10201-009-0289-1.

  • Lillesand, T. M., Johnson, W. L., & Deuell, R. L. (1983). Use of landsat data to predict the trophic state of Minnesota lakes. Photogrammetric Engineering and Remote Sensing.

  • Lopes, O. F., Rocha, F. A., de Sousa, L. F., da Silva, D. M. L., Amorim, A. F., Gomes, R. L., et al. (2019). Influence of land use on trophic state indexes in northeast Brazilian river basins. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-7188-7.

  • Ludovisi, A., & Poletti, A. (2003). Use of thermodynamic indices as ecological indicators of the development state of lake ecosystems. 1. Entropy production indices. Ecological Modelling. https://doi.org/10.1016/S0304-3800(02)00277-6.

  • Lundberg, C. (2013). Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2012.09.031.

  • Matthews, R., Hilles, M., & Pelletier, G. (2002). Determining trophic state in Lake Whatcom, Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation. Hydrobiologia. https://doi.org/10.1023/A:1015288519122.

  • Orhan, F. (2015). Baraj Göllerinin Alternatif Ekonomik Faaliyetlerde Kullanimi: Borçka Baraj Gölü Örneği. Marmara Coğrafya Dergisi. https://doi.org/10.14781/mcd.73512.

  • Ortiz-Jiménez, M. A., De Anda, J., & Maniak, U. (2006). Estimation of trophic states in warm tropical lakes and reservoirs of Latin America by using GPSS simulation. Interciencia.

  • Panikkar, P., & Khan, M. F. (2008). Comparative mass-balanced trophic models to assess the impact of environmental management measures in a tropical reservoir ecosystem. Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2007.10.029.

  • Papastergiadou, E., Kagalou, I., Stefanidis, K., Retalis, A., & Leonardos, I. (2010). Effects of anthropogenic influences on the trophic state, land uses and aquatic vegetation in a shallow Mediterranean lake: implications for restoration. Water Resources Management. https://doi.org/10.1007/s11269-009-9453-y.

  • Perkins, R. G., & Underwood, G. J. C. (2000). Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition. Water Research. https://doi.org/10.1016/S0043-1354(99)00228-6.

  • Rippey, S. R., & Cabelli, V. J. (1989). Use of the thermotolerant Aeromonas group for the trophic state classification of freshwaters. Water Research. https://doi.org/10.1016/0043-1354(89)90154-1.

  • Shapiro, J., Lundquist, J. B., & Carlson, R. E. (1975). Involving the public in limnology — an approach to communication. SIL Proceedings, 1922-2010, 19(2), 866–874. https://doi.org/10.1080/03680770.1974.11896133.

    Article  Google Scholar 

  • Sharma, S. (1996). Applied multivariate techniques. New York: John Wiley and Sons Inc.

    Google Scholar 

  • Shi, P., Zhang, Y., Li, Z., Li, P., & Xu, G. (2017). Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena. https://doi.org/10.1016/j.catena.2016.12.017.

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18), 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Smith, V. H. (1982). The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnology and Oceanography. https://doi.org/10.4319/lo.1982.27.6.1101.

  • Snelder, T. H., Larned, S. T., & McDowell, R. W. (2018). Anthropogenic increases of catchment nitrogen and phosphorus loads in New Zealand. New Zealand Journal of Marine and Freshwater Research. https://doi.org/10.1080/00288330.2017.1393758.

  • Soballe, D., & Threlkeld, S. (1985). Advection, phytoplankton biomass, and nutrient transformations in a rapidly flushed impoundment. Archiv für Hydrobiologie, 105(2), 187–203.

    Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Oxidation and reduction; equilibria and microbial mediation. In Aquatic chemistry: chemical equilibria and rates in natural waters (3rd ed.). New York: John Wiley & Sons, Inc.

  • Sucu, S., & Dinç, T. (2008). Çoruh Havzasi Projelerİ. In In TMMOB 2. Su Politikaları: Kongresi.

    Google Scholar 

  • SWQMR. (2016). Turkish surface water quality management regulations. Official Gazette 10.08.2016 and numbered 29797.

  • Terra, B. D. F., & Araújo, F. G. (2011). A preliminary fish assemblage index for a transitional river-reservoir system in southeastern Brazil. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2010.11.006.

  • Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592. https://doi.org/10.1016/S0043-1354(98)00138-9.

    Article  CAS  Google Scholar 

  • Vieira, J. M. P., Pinho, J. L. S., Dias, N., Schwanenberg, D., & Van Den Boogaard, H. F. P. (2013). Parameter estimation for eutrophication models in reservoirs. Water Science and Technology. https://doi.org/10.2166/wst.2013.248.

  • Walker, W. W. (1982). An empirical analysis of phosphorus, nitrogen, and turbidity effects on reservoir chlorophyll-A levels. Canadian Water Resources Journal. https://doi.org/10.4296/cwrj0701088.

  • Welch, E. B., & Lindell, T. (1992). Ecological effects of wastewater: applied limnology and pollution effects. Ecology.

  • Xu, Y., Shao, M., Han, X., & Cai, Q. (2011). Temporal asynchrony of trophic status between mainstream and tributary bay within a giant dendritic reservoir: the role of local-scale regulators. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-010-0705-5.

  • Yang, J., Yu, X., Liu, L., Zhang, W., & Guo, P. (2012). Algae community and trophic state of subtropical reservoirs in southeast Fujian. China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-011-0683-1.

  • Zhang, W., & Rao, Y. R. (2012). Application of a eutrophication model for assessing water quality in Lake Winnipeg. Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2011.01.003.

  • Zou, X., Wan, J., Pan, X., Wan, C., Peng, J., Chang, J., & Xie, P. (2014). Nitrogen and phosphorus relationships to chlorophyll a in 139 reservoirs of China. Fresenius Environmental Bulletin.

Download references

Acknowledgments

The author would like to thank the Artvin Provincial Directorate of Environment and Urbanization for providing the data and Assoc. Prof. Dr. Halil Akıncı for carrying out the drawing and mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayla Bilgin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin, A. Trophic state and limiting nutrient evaluations using trophic state/level index methods: a case study of Borçka Dam Lake. Environ Monit Assess 192, 794 (2020). https://doi.org/10.1007/s10661-020-08741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08741-0

Keywords

Navigation