Skip to main content
Log in

Geochemical background concentrations of potentially toxic elements in soils of the Carajás Mineral Province, southeast of the Amazonian Craton

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this study was to establish background concentrations of potentially toxic elements (PTEs) in soils from the Carajás Mineral Province (CMP), southeastern Amazonian Craton. The PTEs Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V, and Zn were digested in microwaves and quantified by optical emission spectrometry (ICP OES). The variability of physical-chemical and mineralogical attributes contributed to variation in PTE concentrations. High background concentrations of Al, Fe, Cr, Mn, Mo, Ni, Ti, and V and, in particular, the PTE concentrations of Cd, Cu, Cr, Ba, and Co were greater than the prevention values defined by the Brazilian National Council of Environment. Soil quality reference values (QRVs) were greater than those determined for most Brazilian states and soils in the state of Pará. The high background concentrations and QRVs of PTEs show that the region is strongly influenced by the source material, rich in ferruginous deposits and other associated minerals. The results are an important tool for establishing soil quality standards and public policies for environmental protection in regions naturally PTE enriched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfaro, M. R., Montero, A., Ugarte, O. M., Nascimento, C. W. A., Biondi, C. M., & Silva, Y. J. A. B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187, 4198–4208. https://doi.org/10.1007/s10661-014-4198-3.

    Article  CAS  Google Scholar 

  • Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. P., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba State, Brazil. Revista Brasileira de Ciência do Solo., 40, e0150122. https://doi.org/10.1590/18069657rbcs20150122.

    Article  Google Scholar 

  • Andrade, L. N., Leite, M. G. P., & Bacellar, L. A. P. (2012). Composição mineralógica e geoquímica dos solos do parque estadual do Itacolomi - Ouro Preto/MG. Quaternary and Environmental Geosciences., 03(1-2), 01–08.

    Article  Google Scholar 

  • Babinski, M., Chemale Júnior, F., & Van Schmus, W.R. (1993). A idade das formações ferríferas bandadas do Supergrupo Minas e sua correlação com aquelas da África do Sul e Austrália. Anais do II Simpósio Sobre o Craton do São Francisco, Salvador, Bahia, Brazil. 152–153.

  • Bech, J., Tume, P., Longan, L., & Reverter, F. (2012). Baseline concentrations of trace elements in surface soils of the Torrelles and Sant climent municipal districts (Catalonia, Spain). Environmental Monitoring and Assessment, 108, 309–322. https://doi.org/10.1007/s10661-005-4331-4.

    Article  CAS  Google Scholar 

  • Berni, G. V., Heinrich, C. A., Lobato, L. M., Wall, V. J., Rosière, C. A., & Freitas, M. A. (2014). The Serra Pelada Au-Pd-Pt deposit Carajás, Brasil: geochemistry, mineralogy, and zoning of hydrothermal alteration. Economic Geography, 109, 1883–1899.

    CAS  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A., Fabricio Neta, A. B., & Ribeiro, M. R. (2011a). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35, 1057–1066. https://doi.org/10.1590/S0100-06832011000300039.

    Article  CAS  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A., & Fabricio Neta, A. B. (2011b). Natural concentrations of barium in benchmark soils of Pernambuco, Brazil. Revista Brasileira de Ciência do Solo, 35, 1819–1826. https://doi.org/10.1590/S0100-06832011000500036.

    Article  Google Scholar 

  • Cabral, A. R., Creaser, R. A., Nägler, T., Lehmann, B., Voegelin, A. R., Belyatsky, B., Pašava, J., Gomes Jr., A. A. S., Galbiatti, H., Böttcheri, M. E., & Escheri, P. (2013). Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil. Chemical Geology., 362, 91–104.

    Article  CAS  Google Scholar 

  • Camargo, A. L., Marques Jr., J., Barrón, V., Alleoni, L. R. F., Pereira, G. T., Teixeira, D. B., & Bahia, A. S. R. S. (2018). Predicting potentially toxic elements in tropical soils from iron oxides, magnetic susceptibility and diffuse reflectance spectra. Catena., 165, 503–515.

    Article  CAS  Google Scholar 

  • Carvalho e Silva, M.L.C. (1994). Cristaloquímica dos minerais do lateritico de niquel: o exemplo do vermelho, Serra dos Carajas (PA). 104p. Tese de Doutorado (Doutorado em Geoquímica e Geotecnia). https://doi.org/10.11606/T.44.1994.tde-18112015-105504

  • Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75. https://doi.org/10.1016/j.chemosphere.2015.04.008.

    Article  CAS  Google Scholar 

  • Chen, J., Wei, F., Zheng, F., Wu, Y., & Adriano, D. C. (1991). Background concentrations of elements in soils of China. Water, Air, and Soil Pollution, 57-58, 699–712.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality, 28, 1173–1181.

    Article  CAS  Google Scholar 

  • Cheng, Z., Xie, X., Yao, W., Feng, J., Zhang, Q., & Fang, J. (2014). Multi-element geochemical mapping in Southern China. Journal of Geochemical Exploration, 139, 183–192. https://doi.org/10.1016/j.gexplo.2013.06.003.

    Article  CAS  Google Scholar 

  • Conselho Nacional do Meio Ambiente (CONAMA). Resolução n° 420 de 28 de dezembro de 2009. Brasília. (2009). Publicada no Diário Oficial da União de 30 de Dezembro de 2009. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. (Acessado em Jan 2020).

  • Conselho Estadual de Política Ambiental (COPAM). (2011). Deliberação Normativa Conjunta COPAM/CERH n° 02, de 08 de setembro de 2010. Republicação – Diário do Executivo – “Minas Gerais” – 29/12/2010. Disponível em http://www.siam.mg.gov.br/sla/download.pdf?idNorma=14670 (Acessado em Dez 2018).

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Competitive sorption and desorption of heavy metals by individual soil components. Journal of Hazardous Materials, 140, 308–315.

    Article  CAS  Google Scholar 

  • Cunha, I. R. V., Dall’Agnol, R., & Feio, G. R. L. (2016). Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajas Province e Amazonian Craton: Implications for the evolution of ferroan Archean granites. Journal of South American Earth Sciences., 67, 100–121.

    Article  Google Scholar 

  • Environmental Sanitation Technology Company (Cetesb). Environmental Agency of the State of São Paulo. (2016). Decisão de Diretoria N° 256/2016/E, de 22 de Nov. 2016. São Paulo. https://www.cetesb.sp.gov.br/wp-content/uploads/sites/11/2014/12/DD-256-2016-E-Valores-Orientadores-Dioxinas-e-Furanos-2016-Intranet.pdf. Assessed 15 Dec 2019

  • Fadigas, F. S., Amaral Sobrinho, N. M. B., Mazur, N., Anjos, L. H. C., & Freixo, A. A. (2006). Proposition of reference values for natural concentration of heavy metals in Brazilian soils. Revista Brasileira de Engenharia Agrícola e Ambiental, 10, 699–705.

    Article  Google Scholar 

  • Fernandes, A. R., Santos, E. S., Braz, A. M. S., Birani, S. M., & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration., 190, 453–463.

    Article  CAS  Google Scholar 

  • Golden Software, Inc. (2002). www.goldensoftware.com. Assessed 10 Dec 2018.

  • Grainger, C. J., Groves, D. I., Tallarico, F. H. B., & Fletcher, I. R. (2008). Metallogenesis of the Carajás Mineral Province, Southern Amazon Craton, Brazil: varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geology Reviews, 33(3–4), 451–489.

    Article  Google Scholar 

  • Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxembourg. Catena., 59, 279–304.

    Article  CAS  Google Scholar 

  • Krishna, A. K., Mohan, K. R., Murthy, N. N., Periasamy, V., Bipinkumar, G., Manohar, K., & Rao, S. S. (2013). Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India. Environmental Earth Sciences, 70, 699–708. https://doi.org/10.1007/s12665-012-2153-6.

    Article  CAS  Google Scholar 

  • Martinez-Lladó, X., Vilà, M., Martí, V., Rovira, M., Domènech, J. A., & Pablo, J. (2008). Trace element distribution in Topsoils in Catalonia: background and reference values and relationship with regional geology. Environmental Engineering Science, 25-26, 863–878. https://doi.org/10.1089/ees.2007.0139.

    Article  CAS  Google Scholar 

  • Melo, A. T., Huelsen, M. G. V., Travaglia Filho, U. J., & Fuck, R. A. (2014). Comparison between 1d electromagnetic modeling programs: a case history for Cristalino iron oxide copper gold deposit, Carajas Mineral Province, Brazil. Revista Brasileira de Geof´ısica., 32(3), 433–443.

    Article  Google Scholar 

  • Nogueira, T. A. R., Abreu-Junior, C. H., Alleoni, L. R. F., He, Z., Soares, M. R., Vieira, C. S., Lessa, L. G. F., & Capra, G. F. (2018). Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. Journal of Environmental Management., 221, 10–19.

    Article  CAS  Google Scholar 

  • Paradella, W. R., Ferretti, A., Mura, J. C., Colombo, D., Gama, F. F., Tamburini, A., Santos, A. R., Novali, F., Galo, M., Camargo, P. O., Silva, A. Q., Silva, G. G., Silva, A., & Gomes, L. L. (2015). Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Engineering Geology, 193, 61–78. https://doi.org/10.1016/j.enggeo.2015.04.015.

  • Paye, H. S., Mello, J. W. V., Abrahão, W. A. P., Fernandes Filho, E. I., Dias, L. C. P., Castro, M. L. O., Melo, S. B., & França, M. M. (2010). Valores de referência de qualidade para metais pesados em solos no estado do Espírito Santo. Revista Brasileira de Ciências do Solo., 34, 2041–2051.

    Article  Google Scholar 

  • Polvic, P., Marković, M., Kostić, O., Sakan, S., Đorđević, D., Perović, V., Pavlović, D., Pavlović, M., Čakmak, D., Jarić, S., Paunović, M., & Mitrović, M. (2019). Evaluation of potentially toxic element contamination in the riparian zone of the River Sava. Catena., 174, 399–412.

    Article  Google Scholar 

  • Preston, W., Nascimento, C. W. A., Biondi, C. M., Junior, V. S. S., Silva, W. R., & Ferreira, H. A. (2014). Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Revista Brasileira de Ciência do Solo, 38, 1028–1037.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background – concept and reality. Science of the Total Environment, 350, 12–27.

    Article  CAS  Google Scholar 

  • Reimann, C., Ladenberger, A., Birke, M., & Caritat, P. (2016). Low density geochemical mapping and mineral exploration: application of the mineral system concept. Geochemistry: Exploration, Environment, Analysis, 16, 48–61.

    CAS  Google Scholar 

  • Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K., Matschullat, J., & Caritat, P. (2018). The GEMAS Project Team. EMAS: establishing geochemical background and threshold for 53chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318.

    Article  CAS  Google Scholar 

  • Robert, C., & Bell, B.Sc. (2010). Technical report on recent exploration at Novo copper-iron-gold-platinum- Carajás District, Pará, Brazil. Geo Effective Date, p.53. https://www.invmetals.com/wp-content/uploads/2015/01/Rio_Novo_TechRpt.pdf. Assessed 20 Jan 2020.

  • Rodrigues, T. E., Silva, R. C., Silva, B. N. R., Silva, J. M. L., Valente, M. A., Dariva, T. A., Souto de Jesus, A. A., & Venturieri, A. (2007). Characterization, mapping and classification of soils of the area of influence of the BR-163 (Santarém-Cuaba) and BR-230 (Trans-Amazonian Highway), in the Pará state, Brazil. In Embrapa (Ed.), Zoning ecological-economic of the area of influence of the BR-163 (Cuiabá-Santarém) (pp. 403–571). Belém.

  • Salomão, G.N. (2018). Mapeamento Geoquímico e Estimativa de Background em Solos na Região da Província Mineral de Carajás - Leste do Cráton Amazônico, Brasil. p.156. Dissertação de mestrado (Mestrado em Geologia e Geoquímica).

  • Santos, S. N., & Alleoni, L. R. F. (2013). Reference values for heavy metals in soils of Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment, 185, 5737–5748. https://doi.org/10.1007/s10661-012-2980-7.

    Article  CAS  Google Scholar 

  • Santos-Fracés, F., Grana, A. M., Rojo, P. A., & Sanchez, A. G. (2017). Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the Andes Mountain Range (Cajamarca-Huancavelica, Peru). International Journal of Environmental Research and Public Health, 14(8), 22.

    Google Scholar 

  • Schaefer, C.E.G.R., Cândido, H.G., Corrêa, G.R., Pereira, A., & Nunes, J.A. (2015). Solos desenvolvidos sobre canga ferruginosa no Brasil: uma revisão crítica e papel ecológico de termiteiros. (orgs.) Carmo, F.F., Kamino, L.H.Y. Geossistemas Ferruginosos do Brasil. 1ed. Belo Horizonte: 3i, p. 77-102.

  • Schaefer, C. E. G. R., Ribeiro, A. S. S., Corrêa, G. R., Lima Neto, E., Simas, F. N. B., & Ker, J. C. (2016). Características químicas e mineralogia de solos perférricos da Serra Sul de Carajás. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais, 11, 57–69.

    Google Scholar 

  • Sena, A.F.S. (2017). Teores naturais e Valores de Referência de Qualidade para metais pesados em solos da mesorregião sudoeste do Estado do Piauí. Dissertação de mestrado, p.41.

  • Souza, D. M. G., Miranda, L. N., & Oliveira, S. A. (2007). Soil acidity and its correction. In R. F. Novais, V. H. Alvarez, R. L. F. Fontes, R. B. Cantarutti, & J. C. L. Neves (Eds.), Soil fertility (pp. 206–274). Soc. Bras. Ciênc, Solo.

  • Souza, E. S., Fernandes, A. R., Braz, A. M. S., Sabino, L. L., & Alleoni, L. R. (2015). Potentially toxic elements (PTEs) in soils from the surroundings of the Trans-Amazonian Highway, Brazil. Environmental Monitoring and Assessment, 187, 4074.

    Article  Google Scholar 

  • Sposito, G. (2008). Geochemistry in soil science. In W. Chesworth (Ed.), Encyclopedia of soil science (pp. 283–289). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Su, Y. Z., & Yang, R. (2008). Background concentrations of elements in surface soils andtheir changes as affected by agriculture use in the desert-oasis ecotone in themiddle of Heihe River Basin, north-west China. Journal of Geochemical Exploration, 98, 57–64.

    Article  CAS  Google Scholar 

  • Tallarico, F. H. H., Oliveira, C. G., & Figueiredo, B. R. (2000). The Igarapé Bahia Cu-Au mineralization, Carajás Province. Revista Brasileira de Geociencias, 30(2), 230–233.

    Article  CAS  Google Scholar 

  • Tassinari, C. C. G., & Macambira, M. J. B. (2004). A evolução tectônica do Cráton Amazônico. In V. Mantesso-neto, A. Bartorelli, C. D. R. Carneiro, & B. B. Brito Neves (Eds.), Geologia do Continente Sul-Americano (pp. 471–485). São Paulo: Evolução da Obra de Fernando Flávio Marques de Almeida.

    Google Scholar 

  • Teixeira, J. B. G., Misi, A., & Silva, M. G. (2007). Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11, 346–361.

    Article  CAS  Google Scholar 

  • Teixeira, P.C., Donagemma, G.K., Fontana, A., & Teixeira, W.G. (2017). Manual of methods from Analise of Solo. 3rd. rev. e ampl. Embrapa Soil, Brasília. 557p.

  • United States Environmental Protection Agency (USEPA). (2007). Microwave assisted acid digestion of sediments sludge, soils, and oils. EPA SW 846 3051a. Available in:. http://www3.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/3015a.pdf (30p). (acesso em 15 de Janeiro de 2020).

  • Vincent, R. C., & Meguro, M. (2008). Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Revista Brasileira de Botânica, 31, 377–388.

    Google Scholar 

  • Zoz, T., Lana, M. C., Steiner, F., Frandoloso, J. F., & Fey, R. (2009). Influência do ph do solo e de fertilizantes fosfatados sobre a adsorção de fósforo em latossolo vermelho. Synergismus Scyentifica UTFPR., 04, 1–3.

    Google Scholar 

Download references

Acknowledgments

We thank Brazil’s National Counsel of Technological and Scientific Development (CNPq) for the financial support (305819/2018-6 and 425312/2018-6), and Coordination for the Improvement of Higher Education Personnel (CAPES) due to the financial support in the development of this work and for the scholarships provided, as well as the Evandro Chagas Institute for the support on chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Wilians de Lima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, M.W., Hamid, S.S., de Souza, E.S. et al. Geochemical background concentrations of potentially toxic elements in soils of the Carajás Mineral Province, southeast of the Amazonian Craton. Environ Monit Assess 192, 649 (2020). https://doi.org/10.1007/s10661-020-08611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08611-9

Keywords

Navigation