Skip to main content

Advertisement

Log in

Pesticides residues in tobacco smoke: risk assessment study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pesticides are not only used on food but also on non-food crops, such as tobacco, to control a range of unwanted animal, plant, and microbial, fungal pests. The residue levels in tobacco leaves are expected to decline up to harvest, during drying, and when the leaves are further processed. Additional pesticides may also be applied to the finished product and residue levels may remain present even when the tobacco is burned. Human exposure to pesticide residues on tobacco occurs when residues remaining in cigarette smoke are inhaled. Based on this assumption, the objectives of this research were (i) to determine the level of pesticides residues in harvested tobacco leaves and (ii) to assess the risk of human exposure to these residues in tobacco smoke. Pesticide residues were detected in all analysed tobacco samples. These detected residues represent ten different active ingredients (AI), three of these AIs (thiodicarb, alachlor, and endosulfan) are no longer allowed in Europe. A 54.7% of these residues were quantifiable. Furthermore, it was found that with the use of solid-phase extraction sorbent (SPE) as adsorbent and n-hexane as solvent, higher recoveries of the pesticide residues in the tobacco smoke from the amount spiked can be obtained. It was also found that cigarette filters help to reduce the intake of residues of pesticides that may be present in cigarettes. Finally, the study concluded that both active smoking and passive smoking populations are exposed to pesticide residues in the tobacco smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu-Gutiérrez, M., & Suárez-Lugo, N. (2018). Risk and protective factors linked to smoking at home with adolescents in Cuba. Horizonte Sanitario, 17(1), 21–30. https://doi.org/10.19136/hs.a17n1.1818.

    Article  Google Scholar 

  • Asubiojo, O. I., Adebiyi, F. M., Ayenimo, J. G., Olukoko, O. O., & Oyekunle, J. A. O. (2009). Chemical analysis of tobacco cigarette for organochlorine insecticides and heavy metal composition. Toxicological & Environmental Chemistry, 91(4), 611–618. https://doi.org/10.1080/02772240802343123.

    Article  CAS  Google Scholar 

  • Ávila, N. L. P., Toledo, S. H., & Lefrán, A. L. (2016). Characterization of publication on smoking in Cuban scientific journals in the 2005-2014 period. Revista Cubana de Salud Pública, 42(3), 375–384 http://www.revsaludpublica.sld.cu/index.php/spu/article/view/537/768. Accessed 16 October 2018

  • Bernal, E. (2014). Limit of detection and limit of quantification determination in gas chromatography. In Advances in Gas Chromatography be (pp. 57–81). INTECH. https://doi.org/10.5772/57341.

  • Bernardi, G., Kemmerich, M., Ribeiro, L. C., Adaime, M. B., Zanella, R., & Prestes, O. D. (2016). An effective method for pesticide residues determination in tobacco by GC-MS / MS and UHPLC-MS / MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta, 161, 40–47. https://doi.org/10.1016/j.talanta.2016.08.015.

    Article  CAS  Google Scholar 

  • CORESTA (2016). CORESTA GUIDE N° 1. The Concept and Implementation of CPA Guidance Residue Levels.

  • CORESTA (2017). CORESTA Guide N°19. Responsible use of Crop Protection Agents ( CPAs ) in tobacco leaf production (Issue April).

  • Cozzani, V., Barontini, F., Mcgrath, T., Mahler, B., Nordlund, M., Smith, M., Schaller, J. P., & Zuber, G. (2020). Thermochimica Acta An experimental investigation into the operation of an electrically heated tobacco system. Thermochimica Acta, 684, 178475. https://doi.org/10.1016/j.tca.2019.178475.

    Article  CAS  Google Scholar 

  • Dane, A. J., Havey, C. D., & Voorhees, K. J. (2006). The detection of nitro pesticides in mainstream and sidestream cigarette smoke using electron monochromator-mass spectrometry. Analytical Chemistry, 78(10), 3227–3233. https://doi.org/10.1021/ac060328w.

    Article  CAS  Google Scholar 

  • DG SANTE (2018). Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. European Commission Directorate General for Health and Food Safety, 46.

  • Dieng, H., Rajasaygar, S., Ahmad, A. H., Ahmad, H., Rawi, C. S. M., Zuharah, W. F., Satho, T., Miake, F., Fukumitsu, Y., Saad, A. R., Ghani, I. A., Vargas, R. E. M., Majid, A. H. A., & AbuBakar, S. (2013). Turning cigarette butt waste into an alternative control tool against an insecticide-resistant mosquito vector. Acta Tropica, 128(3), 584–590. https://doi.org/10.1016/J.ACTATROPICA.2013.08.013.

    Article  Google Scholar 

  • Dieng, H., Rajasaygar, S., Hassan, A., Salmah, C., Ahmad, H., Satho, T., Miake, F., Fatma, W., Fukumitsu, Y., Ramli, A., Abdul, S., Enrique, R., Vargas, M., Hafiz, A., Majid, A., Fadzly, N., Faeza, N., Kassim, A., Aida, N., et al. (2014). Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera : Culicidae). Acta Tropica, 130, 123–130. https://doi.org/10.1016/j.actatropica.2013.11.001.

    Article  Google Scholar 

  • FAO-PNUMA (2016). Rotterdam Convention. on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Tradewww.pic.int Accessed 27 Feb 2017

  • FRAC (2018). FRAC Code List © 2018: Fungicides sorted by mode of action (including FRAC Code numbering).

  • GAO (2003). GAO-03-485 Pesticide on tobacco. Federal Activities to Assess Risks and Monitor Residues (Issue March). http://www.gao.gov/cgi-bin/getrpt?GAO-03-485 Accessed 27 Feb 2017

  • Guthrie, F. E. (1968). The nature and significance of pesticide residues on tobacco and in tobacco smoke. Contributions to Tobacco Research, 4(6), 18. https://doi.org/10.2478/cttr-2013-0190.

    Article  Google Scholar 

  • Habanos (n.d.). El paraiso del tabaco. El Mundo Del Habano. Retrieved July 18, 2019, from http://www.habanos.com/es/el-mundo-del-habano/el-paraiso-del-tabaco/?age-verified=90ae27b145. Accessed 18 July 2019

  • IRAC (2019). IRAC Mode of Action Classification Scheme. Version 9.3. http://www.irac-online.org/documents/moa-classification/. Accessed 30 Oct 2019

  • Jebet, A., Kibet, J. K., Kinyanjui, T., & Nyamori, V. O. (2018). Environmental inhalants from tobacco burning : tar and particulate emissions. Scientific African, 1, e00004. https://doi.org/10.1016/j.sciaf.2018.e00004.

    Article  Google Scholar 

  • JMPR (1979). Report of the eleventh session of the Codex Commities on Pesticide Residues.

  • Khan, Z. S., Kumar, R., Girame, R., Utture, S. C., Gadgil, M., Banerjee, K., Reddy, D. D., & Johnson, N. (2014). Optimization of a sample preparation method for multiresidue analysis of pesticides in tobacco by single and multi-dimensional gas chromatography-mass spectrometry. Journal of Chromatography A, 1343, 200–206. https://doi.org/10.1016/j.chroma.2014.03.080.

    Article  CAS  Google Scholar 

  • Khan, Z. S., Girame, R., Utture, S. C., Kumar, R., & Banerjee, K. (2015). Rapid and sensitive multiresidue analysis of pesticides in tobacco using low pressure and traditional gas chromatography tandem mass spectrometry. Journal of Chromatography A, 1418, 228–232. https://doi.org/10.1016/j.chroma.2015.09.070.

    Article  CAS  Google Scholar 

  • Koszowski, B., Goniewicz, M. L., Czogala, J., Zymelka, A., & Sobczak, A. (2009). Simultaneous determination of nicotine and 3-vinylpyridine in single cigarette tobacco smoke and in indoor air using direct extraction to solid phase. International Journal of Environmental Analytical Chemistry, 89(2), 105–117. https://doi.org/10.1080/03067310802549946.

    Article  CAS  Google Scholar 

  • Krebs, N. M., Chen, A., Zhu, J., Sun, D., Liao, J., Stennett, A. L., & Muscat, J. E. (2016). Comparison of puff volume with cigarettes per day in predicting nicotine uptake among daily smokers. American Journal of Epidemiology, 184(1), 48–57. https://doi.org/10.1093/aje/kwv341.

    Article  Google Scholar 

  • Kurgat, C., Kibet, J., & Cheplogoi, P. (2016). Molecular modeling of major tobacco alkaloids in mainstream cigarette smoke. Chemistry Central Journal, 10(43), 1–11. https://doi.org/10.1186/s13065-016-0189-5.

    Article  CAS  Google Scholar 

  • Lorenzo Vázquez, E., Castillo Rodríguez, E., Valdés Girona, B. R., Perdomo Delgado, J., & Marrero Sotolongo, S. (2016). Manual de Prevencion y tratamiento del tabaquismo. unidad de Promoción de Salud y Prevención de Enfermedades.

  • Lozowicka, B., Rutkowska, E., & Hrynko, I. (2015). Simultaneous determination of 223 pesticides in tobacco by GC with simultaneous electron capture and nitrogen-phosphorous detection and mass spectrometric confirmation. Open Chemistry, 13, 1137–1149. https://doi.org/10.1515/chem-2015-0129.

    Article  CAS  Google Scholar 

  • McDaniel, P. A., Solomon, G., & Malone, R. E. (2005). The tobacco industry and pesticide regulations : case studies from tobacco industry archives. Environmental Health Perspectives, 113(12), 1659–1665. https://doi.org/10.1289/ehp.7452.

    Article  Google Scholar 

  • Muiño-García, B. L., Fernández-Goncalves, E., Jiménez-Ramos, J., Vázquez-Moreno, L. L., & Pérez-Montes Bravo, E. (2016). Science management in the Plant Health Research Institute and its contribution to the environment protection and sustainability of the Cuban agricultural systems. Journal of the Selva Andina Biosph, 4(2), 116–125.

    Article  Google Scholar 

  • Novotny, T. E., & Slaughter, E. (2014). Tobacco product waste : an environmental approach to reduce tobacco consumption. Current Environmental Health Reports, 1, 208–216. https://doi.org/10.1007/s40572-014-0016-x.

    Article  Google Scholar 

  • Pappas, R. S. (2011). Toxic elements in tobacco and in cigarette smoke: inflammation and sensitization. Metallomics, 3(11), 1181–1198. https://doi.org/10.1039/c1mt00066g.

    Article  CAS  Google Scholar 

  • Pauwels, C. G. G. M., Boots, A. W., Visser, W. F., Pennings, J. L. A., Talhout, R., Van Schooten, F.-J., & Opperhuizen, A. (2020). Characteristic human individual puffing profiles can generate more TNCO than ISO and Health Canada Regimes on smoking machine when the same brand is smoked. International Journal of Environmental Research and Public Health, 17(9), 3225. https://doi.org/10.3390/ijerph17093225.

    Article  Google Scholar 

  • Perdomo Hernández, E. E., Ramos Torres, L., & López Dávila, E. (2016). Efectos medioambientales en la provincia de Sancti Spíritus por el uso de plaguicidas químicos. Revista Márgenes, 4(4), 87–102.

    Google Scholar 

  • Qamar, W., Abdelgalil, A. A., Aljarboa, S., Alhuzani, M., & Altamimi, M. A. (2019). Cigarette waste: assessment of hazard to the environment and health in Riyadh city. Saudi Journal of Biological Sciences., 27, 1380–1383. https://doi.org/10.1016/J.SJBS.2019.12.002.

    Article  Google Scholar 

  • Rahman, M. A., Chowdhury, A. Z., Moniruzzaman, M., Gan, S. H., Islam, M. N., Fardous, Z., & Khorshed Alam, M. (2012). Pesticide residues in tobacco leaves from the Kushtia District in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 6, 658–663. https://doi.org/10.1007/s00128-012-0725-5.

    Article  CAS  Google Scholar 

  • Sparks, T. C., & Nauen, R. (2015). IRAC: mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122–128. https://doi.org/10.1016/j.pestbp.2014.11.014.

    Article  CAS  Google Scholar 

  • Suárez Lugo, N. (2018). Consumptions, price and cigarettes market segmentation. Cuba, 2017. Revista Cubana Salud Pública, 44(4), 125–139.

    Google Scholar 

  • Suárez-Lugo, N. (2014). Market for and consumption of cigarettes in Cuba and the choice between tobacco and health. Revista Cubana de Salud Pública, 40(3), 331–344.

    Google Scholar 

  • Suarez-Lugo, N. D. l. C. (2017). Consumo de cigarrillos y elasticidad precio-demanda. Cuba 2016. Horizonte Sanitario, 16(3), 163–174. https://doi.org/10.19136/hs.a16n3.1751.

    Article  Google Scholar 

  • Suárez-Lugo, N., & Galceran-Serrat, V. (2018). Normas jurídicas de prevención , control del tabaquismo y Convenio Marco para el Control del Tabaco en Cuba. Horizonte Sanitario, 17(3), 167–177. https://doi.org/10.19136/hs.a17n3.2389.

    Article  Google Scholar 

  • Vann, M. C., & Fisher, L. R. (2014). Azoxystrobin, butralin, and flumetralin residues in flue-cured tobacco. Tobacco Science, 51, 23–28.

    Google Scholar 

  • Varona Pérez, P., García Roche, G., Willams Fogarty, A., & Britton, J. (2015). Mortality due to lung cancer and ischemic heart disease attributable to passive smoking in Cuba-2011. Revista Cubana de Higiene y Epidemiología, 53(2), 9.

    Google Scholar 

  • Varona Pérez, P., García Roche, R. G., García Pérez, R. M., & Lorenzo Vázquez, E. (2016). Smoking and smoking risk perception in Cuban education workers, 2010-2011. Revista Cubana de Salud Pública, 42(1), 45–60.

    Google Scholar 

  • Varona, P., Herrera, D., García, R. G., Bonet, M., Romero, T., & Venero, S. J. (2009). Smoking-attributable mortality in Cuba. MEDICC Review, 11(3), 43–47 http://www.ncbi.nlm.nih.gov/pubmed/21483306. Accessed 16 Oct 2018

  • WHO (2012). WHO Study Group on Tobacco Product Regulation. Report on the scientific basis of tobacco product regulation: Fourth report of a WHO Study Group. In World Health Organization technical report series (Issue 967).

  • Yan-bo, L., Hao-bo, Z., Xing-yi, J., Xue, L., Hong-fei, Z., & Feng-peng, Z. (2015). Determination of pesticide residues in tobacco using modified QuEChERS procedure coupled to on-line gel permeation chromatography-gas chromatography / tandem mass spectrometry. Chinese Journal of Analytical Chemistry, 43(10), 1538–1544. https://doi.org/10.1016/S1872-2040(15)60870-2.

    Article  Google Scholar 

  • Yang, F., Bian, Z., Chen, X., Liu, S., Liu, Y., & Tang, G. (2014). Analysis of 118 pesticides in tobacco after extraction with the modified QuEChRS method by LC – MS-MS. Journal of Chromatographic Science, 52, 788–792. https://doi.org/10.1093/chromsci/bmt112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edelbis López Dávila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Dávila, E., Houbraken, M., De Rop, J. et al. Pesticides residues in tobacco smoke: risk assessment study. Environ Monit Assess 192, 615 (2020). https://doi.org/10.1007/s10661-020-08578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08578-7

Keywords

Navigation