Skip to main content
Log in

Reservoir water quality simulation with data mining models

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water pollution is a concern in the management of water resources. This paper presents a statistical approach for data mining of patterns of water pollution in reservoirs. Genetic programming (GP), artificial neural network (ANN), and support vector machine (SVM) are applied to reservoir quality modeling. Input data for GP, ANN, and SVM were derived with the CE-QUAL-W2 numerical water quality simulation model. A case study was carried out using measured reservoir inflow and outflow, temperature, and nitrate concentration to the Amirkabir reservoir, Iran. Data mining models were evaluated with the MAE, NSE, RMSE, and R2 goodness-of-fit criteria. The results indicated that using the SVM model for determining nitrate pollution is time saving and more accurate in comparison with GP, ANN, and particularly CE-QUAL-W2. The SVM model reduces the runtime of nitrate concentration simulation by 581, 276, and 146 s compared with CE-QUAL-W2, GP, and ANN, respectively. The goodness-of-fit results showed that the highest values (R2 = 0.97, NSE = 0.92) and the lowest values (MAE = 0.034 and RMSE = 0.007) corresponded to SVM predictions, indicating higher model accuracy. This study demonstrates the potential for application of data mining tools to solute concentration simulation in reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aalami, M. T., Abbasi, H., & Nourani, V. (2018). Sustainable management of reservoir water quality and quantity through reservoir operational strategy and watershed control strategies. International Journal of Environmental Research, 12(6), 773–788.

    Article  CAS  Google Scholar 

  • Adams, W., Thackston, E., Speece, R., Wilson, D., and Cardozo, R. (1993). Effect of Nashville’s combined sewer overflows on the water quality of Cumberland River. . Technical Rep, 42

  • Afshar, A., Masoumi, F., & Sandoval Solis, S. (2018). Developing a reliability-based waste load allocation strategy for river-reservoir systems. Journal of Water Resources Planning and Management, 144(9), 04018052.

    Article  Google Scholar 

  • Amirkhani, M., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Loáiciga, H. A. (2016). Multiobjective reservoir operation for water quality optimization. Journal of Irrigation and Drainage Engineering, 142(12), 04016065.

    Article  Google Scholar 

  • Annear, R. L., and Wells, S. A. (2002). "The Bull Run River–reservoir system model."

    Google Scholar 

  • Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming. An introduction Morgan and Kaufmann Publishers. California: Inc. San Francisco.

    Google Scholar 

  • Bowen, J. D., & Heironymuas, J. W. (2003). A CE-QUAL-W2 model of neuse estuary for total maximum daily load development. Water Resources Planning and Management, ASCE, 129(4), 283–294.

    Article  Google Scholar 

  • Chaves, P., Tsukatani, T., & Kojiri, T. (2004). Operation of storage reservoir for water quality by using optimization and artificial intelligence techniques. Mathematics and Computers in Simulation, 67(4-5), 419–432.

    Article  Google Scholar 

  • Cole, T. M., & Wells, S. A. (2018). CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 4.1, user manual. Department of Civil and Environmental Engineering: Portland State University, Portland, Oregon.

    Google Scholar 

  • Duda, A. M. (1993). Addressing nonpoint sources of water pollution must become an international priority. Water Science and Technology, 28(3-5), 1–11.

    Article  CAS  Google Scholar 

  • Edinger, J., & Buchak, E. (1975). A hydrodynamic, two-dimensional reservoir model: the computational basis. In US Army Engineer Division. Ohio River.: Cincinnati, OH.

    Google Scholar 

  • Fallah-Mehdipour, E., Bozorg-Haddad, O., & Mariño, M. A. (2014). Genetic programming in groundwater modeling. Journal of Hydrologic Engineering, 19(12), 04014031. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000987.

    Article  Google Scholar 

  • Gelda, R. K., Owens, E. M., & Effler, S. W. (1998). Calibration, verification, and an application of a two-dimensional hydrothermal model [CE-QUAL-W2 (t)] for Cannonsville Reservoir. Lake and Reservoir Management, 14(2-3), 186–196.

    Article  Google Scholar 

  • Hasanzadeh, S. K., Saadatpour, M., & Afshar, A. (2020). A fuzzy equilibrium strategy for sustainable water quality management in river-reservoir system. Journal of Hydrology, 124892.

  • Jahandideh-Tehrani, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2015). Hydropower reservoir management under climate change: the Karoon reservoir system. Water Resources Management, 29(3), 749–770. https://doi.org/10.1007/s11269-014-0840-7.

    Article  Google Scholar 

  • Kashif Gill, M., Asefa, T., Kaheil, Y., & Mckee, M. (2007). Effects of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique. Journal of Water Resources Research, 43(7), W07416.

    Google Scholar 

  • Khan, M. S., & Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11(3), 199–205.

    Article  Google Scholar 

  • Khu, S. T., Liong, S. Y., Babovic, V., Madsen, H., & Muttil, N. (2001). Genetic programming and application in real-time runoff forecasting 1. JAWRA Journal of the American Water Resources Association, 37(2), 439–451.

    Article  Google Scholar 

  • Kovač, I., Šrajbek, M., Kranjčević, L., & Novotni-Horčička, N. (2020). Nonlinear models of the dependence of nitrate concentrations on the pumping rate of a water supply system. Geosciences Journal, 1–11.

  • Koza, J. R. (1992). Genetic programming II, automatic discovery of reusable subprograms. Cambridge, MA: MIT Press.

    Google Scholar 

  • Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and computing, 4(2), 87–112.

    Article  Google Scholar 

  • Kuo, J.-T., Wang, Y.-Y., & Lung, W.-S. (2006). A hybrid neural–genetic algorithm for reservoir water quality management. Water research, 40(7), 1367–1376.

    Article  CAS  Google Scholar 

  • Lindenschmidt, K. E., Carr, M. K., Sadeghian, A., & Morales-Marin, L. (2019). CE-QUAL-W2 model of dam outflow elevation impact on temperature, dissolved oxygen and nutrients in a reservoir. Scientific Data, 6(1), 1–7.

    Article  Google Scholar 

  • Ling, Y., Wang, M., Chen, Q., & Mynett, A. (2018). Modelling spatial-temporal dynamics of cyanobacteria abundance in lakes by integrating cellular automata and genetic programming. EPiC Series in Engineering, 3, 1214–1223.

    Article  Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

    Article  Google Scholar 

  • Nikoo, M. R., Pourshahabi, S., Rezazadeh, N., & Shafiee, M. E. (2017). Stakeholder engagement in multi-objective optimization of water quality monitoring network, case study: Karkheh Dam reservoir. Water Science and Technology: Water Supply, 17(4), 966–974.

    CAS  Google Scholar 

  • Noori, R., Yeh, H. D., Ashrafi, K., Rezazadeh, N., Bateni, S. M., Karbassi, A., Kachoosangi, F. T., & Moazami, S. (2015). A reduced-order based CE-QUAL-W2 model for simulation of nitrate concentration in dam reservoirs. Journal of Hydrology, 530, 645–656.

    Article  CAS  Google Scholar 

  • Saadatpour, M. (2020). An adaptive surrogate assisted CE-QUAL-W2 model embedded in hybrid NSGA-II_ AMOSA algorithm for reservoir water quality and quantity management. Water Resources Management, 1–15.

  • Saadatpour, M., Afshar, A., & Edinger, J. E. (2017). Meta-model assisted 2D hydrodynamic and thermal simulation model (CE-QUAL-W2) in deriving optimal reservoir operational strategy in selective withdrawal scheme. Water Resources Management, 31(9), 2729–2744.

    Article  Google Scholar 

  • Sarzaeim, P., Bozorg-Haddad, O., Bozorgi, A., & Loáiciga, H. A. (2017). Runoff projection under climate change conditions with data-mining methods. Journal of Irrigation and Drainage Engineering, 143(8), 04017026.

    Article  Google Scholar 

  • Shaw, A. R., Smith Sawyer, H., LeBoeuf, E. J., McDonald, M. P., & Hadjerioua, B. (2017). Hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality model. Water Resources Research, 53(11), 9444–9461.

    Article  CAS  Google Scholar 

  • Shourian, M., Moridi, A., & Kaveh, M. (2016). Modeling of eutrophication and strategies for improvement of water quality in reservoirs. Water Science and Technology, 74(6), 1376–1385.

    Article  CAS  Google Scholar 

  • Soleimani, S., Bozorg-Haddad, O., Saadatpour, M., & Loáiciga, H. A. (2016). Optimal selective withdrawal rules using a coupled data mining model and genetic algorithm. Journal of Water Resources Planning and Management, 142(12), 04016064.

    Article  Google Scholar 

  • Soleimani, S., Bozorg-Haddad, O., Saadatpour, M., & Loáiciga, H. A. (2019). Simulating thermal stratification and modeling outlet water temperature in reservoirs with a data-mining method. Journal of Water Supply: Research and Technology-Aqua, 68(1), 7–19.

    Article  Google Scholar 

  • Tripathi, S., Srinivas, V., & Nanjundiah, R. S. (2006). Downscaling of precipitation for climate change scenarios: a support vector machine approach. Journal of hydrology, 330(3-4), 621–640.

    Article  Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.

    Book  Google Scholar 

  • Wang, Q., Li, S., Jia, P., Qi, C., & Ding, F. (2013). A review of surface water quality models. The Scientific World Journal, 2013.

  • YoosefDoost, A., Karrabi, M., Rezazadeh, N., & Mirabi, M. (2020). Development of the delta-normal stress combining CE-QUAL-W2 as a novel method for spatio-temporal monitoring of water quality in Karkheh Dam Reservoir. Environmental Monitoring and Assessment, 192, 1–13.

    Article  Google Scholar 

Download references

Funding

The authors thank Iran’s National Science Foundation (INSF) for its financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefinia, A., Bozorg-Haddad, O., Oliazadeh, A. et al. Reservoir water quality simulation with data mining models. Environ Monit Assess 192, 482 (2020). https://doi.org/10.1007/s10661-020-08454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08454-4

Keywords

Navigation