Skip to main content

Advertisement

Log in

Assessment of the spatio-temporal pattern of PM2.5 and its driving factors using a land use regression model in Beijing, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

With the acceleration of urbanization and industrialization, atmospheric pollution has become a major issue, restricting the sustainable development of the urban environment. Since 2013, Beijing has been among China’s most seriously affected regions in terms of haze pollution. Atmospheric pollution is closely linked to land use, particularly the spatial patterns of green and urban land. Therefore, the quantification of the relationship between fine particulate matter (PM2.5) concentration and its driving factors in Beijing is of considerable significance for environmental management and spatial epidemiological studies. A land use regression (LUR) model was constructed to simulate the spatio-temporal distribution of PM2.5 concentration. In this study, the independent variables (driving factors) included land use, meteorological factors, population, roads, the digital elevation model, and the normalized difference vegetation index. The five models had adjusted R2 of 0.887, 0.770, 0.742, 0.877, and 0.798, respectively. Land use and meteorological factors were the main factors affecting PM2.5 concentration. The driving factors of land use on a large scale and roads on a small scale had a significant impact on PM2.5 emissions. Beijing’s PM2.5 concentrations in 2015 showed clear spatio-temporal characteristics. The highest (lowest) average PM2.5 concentration was recorded in winter (summer). In terms of spatial distribution, PM2.5 concentrations showed a “low in the northwest and high in the southeast” trend. The most polluted areas were mainly distributed in the central city and the southeastern and southwestern regions. The PM2.5 concentration boundary was essentially consistent with the boundary of land use type. Different land use types promoted or inhibited PM2.5 concentrations, with a difference of more than 20 μg/m3 PM2.5 between the two land use categories. Thus, PM2.5 concentrations should be controlled by optimizing the spatial and temporal patterns of land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam-Poupart, A., Brand, A., Fournier, M., Jerrett, M., & Smargiassi, A. (2014). Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of Kriging, land-use regression (LUR), and combined Bayesian maximum entropy-LUR approaches. Environmental Health Perspectives, 122(9), 970–976.

    Google Scholar 

  • Amini, H., Taghavi-Shahri, S. M., Henderson, S. B., Naddafi, K., Nabizadeh, R., & Yunesian, M. (2014). Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Science of the Total Environment, 488, 343–353.

    Google Scholar 

  • Beckerman, B. S., Jerrett, M., Martin, R. V., van Donkelaar, A., Ross, Z., & Burnett, R. T. (2013). Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California. Atmospheric Environment, 77, 172–177.

    CAS  Google Scholar 

  • Beijing Municipal Environmental Monitoring Center (BMEMC), China. 2018. Beijing air quality. EB/OL. http://zx.bjmemc.com.cn/, (accessed 18.06.02).

  • Bihamta, N., Soffianian, A., Fakheran, S., & Gholamalifard, M. (2015). Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. Journal of the Indian Society of Remote Sensing, 43(2), 407–414.

    Google Scholar 

  • Bonan, G. B. (1997). Effects of land use on the climate of the United States. Climatic Change, 37(3), 449–486.

    Google Scholar 

  • Branis, M., Rezacova, P., & Domasova, M. (2005). The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environmental Research, 99(2), 143–149.

    CAS  Google Scholar 

  • Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., et al. (1997). Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 11(7), 699–718.

    Google Scholar 

  • Cao, J., Xu, H., Xu, Q., Chen, B., & Kan, H. (2012). Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese City. Environmental Health Perspectives, 120(3), 373–378. https://doi.org/10.1289/ehp.1103671.

    Article  CAS  Google Scholar 

  • Chan, Y. C., Simpson, R. W., McTainsh, G. H., Vowles, P. D., Cohen, D. D., & Bailey, G. M. (1997). Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment, 31(22), 3773–3785.

    CAS  Google Scholar 

  • Chen, Q., & Hildemann, L. M. (2009). The effects of human activities on exposure to particulate matter and bioaerosols in residential homes. Environmental Science & Technology, 43(13), 4641–4646.

    CAS  Google Scholar 

  • Chen, H., Bai, S., Eisinger, D., Niemeier, D., & Claggett, M. (2009). Predicting near-road PM2.5 concentrations: comparative assessment of CALINE4, CAL3QHC, and AERMOD. Transportation Research Record, 2123(1), 26–37.

    CAS  Google Scholar 

  • Chen, L., Sun, R., & Liu, H. (2013). Eco-environmental effects of urban landscape pattern changes: progresses problems, and perspectives. J. Acta Ecologica Sinica, 33(4), 1042–1050 (in Chinese).

    Google Scholar 

  • Chen, H., Li, Q., Wang, Z., Mao, H., Zhou, C., Zhang, L., & Chao, X. (2014). Study on monitoring surface PM2.5 concentration in Jing-Jin-Ji regions using MODIS data. J. Journal of Meteorology and Environment, 30(5), 27–37 (in Chinese).

    CAS  Google Scholar 

  • Cheng, N., Li, Y., Qiu, Q., Dong, X., & Sun, R. (2015). Analysis on spatial and temporal distribution of PM2.5 during heavy pollution days in Beijing in 2013. J Environmental Monitoring in China, 31(3), 38–42 (in Chinese).

    CAS  Google Scholar 

  • Chinese Academy of Sciences (CAS), China. (2017). Institute of Geographic Sciences and Natural Resources Research. EB/OL. http://www.resdc.cn/. (accessed 17.06.23).

  • Columbia University (CU), USA. (2017). Socio-economic data and applications center. EB/OL. http://beta.sedac.ciesin.columbia.edu/, (accessed 17.08.09).

  • Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics - impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669–1678. https://doi.org/10.1126/science.250.4988.1669.

    Article  CAS  Google Scholar 

  • Dai, Y., Tao, J., Lin, Z., Xie, S., Cao, J., & Zhang, R. (2013). Characteristics of haze and its impact factors in four mega cities in China during 2006-2009. Journal of Environmental Sciences, 34(08), 2925–2932 (in Chinese).

    Google Scholar 

  • Du, C., Liu, S., Yu, X., Li, X., Chen, C., Peng, Y., et al. (2013). Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi'an, Central China. Aerosol and Air Quality Research, 13(5), 1598–1607.

    Google Scholar 

  • Fan, Y., He, P., Li, J., & Shen, S. (2005). Effect evaluation of air negative ions under different vegetation arrangements in Nanning city. J. Chinese Journal of Ecology, 24(8), 883–886 (in Chinese).

    Google Scholar 

  • Geospatial Data Cloud (GDC), China. (2016). Computer network information center, Chinese Academy of Sciences. EB/OL. http://www.gscloud.cn. (accessed 16.08.20).

  • Han, S., Zhang, Y., Li, Y., & Li, X. (2011). Simulation of extinction and radiant effect of aerosol in spring of Tianjin City. J. China Environmental Science, 31(1), 8–12 (in Chinese).

    Google Scholar 

  • Han, L., Zhou, W., Pickett, S. T. A., Li, W., & Li, L. (2016). An optimum city size? The scaling relationship for urban population and fine particulate (PM 2.5) concentration. Journal of Environment and Pollution, 208, 96–101.

    CAS  Google Scholar 

  • Henderson, S. B., Beckerman, B., Jerrett, M., & Brauer, M. (2007). Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science & Technology, 41(7).

  • Hoek, G., Meliefste, K., Cyrys, J., Lewne, M., Bellander, T., Brauer, M., et al. (2002). Spatial variability of fine particle concentrations in three European areas. Atmospheric Environment, 36(25), 4077–4088.

    CAS  Google Scholar 

  • Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., et al. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33), 7561–7578.

    CAS  Google Scholar 

  • Hu, L., Liu, J., & He, Z. (2016). Self-adaptive revised land use regression models for estimating PM2.5 concentrations in Beijing, China. Sustainability, 8(8).

  • International Scientific & Technical Data Mirror Site (ISTDMS). (2017). Computer network information center, Chinese Academy of Sciences. EB/OL. http://www.gscloud.cn, (accessed 17.04.18).

  • Jazcilevich, A. D., Garcia, A. R., & Ruiz-Suarez, L. G. (2002). A modeling study of air pollution modulation through land-use change in the valley of Mexico. Atmospheric Environment, 36(14), 2297–2307.

    CAS  Google Scholar 

  • Jerrett, M., Arain, M. A., Kanaroglou, P., Beckerman, B., Crouse, D., Gilbert, N. L., et al. (2007). Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. Journal of Toxicology and Environmental Health-Part a-Current Issues, 70(3–4), 200–212. https://doi.org/10.1080/15287390600883018.

    Article  CAS  Google Scholar 

  • Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528–531.

    CAS  Google Scholar 

  • Kong, F., Yin, H., Nakagoshi, N., & James, P. (2012). Simulating urban growth processes incorporating a potential model with spatial metrics. Ecological Indicators, 20, 82–91.

    Google Scholar 

  • Li, X. (1996). A review of the international researches on land use / land cover change. J. Acta Geographica Sinica, 51(06), 554–558 (in Chinese).

    Google Scholar 

  • Li, L., Wang, Y., Li, J., Xin, L., & Jin, J. (2012). The analysis of heavy air pollution in Beijing during 2000~2010. J. China Environmental Science, 32(01), 23–30 (in Chinese).

    Google Scholar 

  • Li, J. Y., Chen, J., Li, H., Qu, S., & Liao, H. (2013). The sensitivity test of land use variation in northern China on summer climate of China. J. Meteorology and disaster reduction research, 36(01), 10–17 (in Chinese).

    Google Scholar 

  • Li, Y., Cheng, N., Zhang, D., Sun, R., Dong, X., Sun, N., Chen, C. (2015). PM2. 5 background concentration at different directions in Beijing in 2013, J. Environmental Sciences, 36(12), 4331–4339. (in Chinese).

  • Liang, C. (2009). Study on land use/cover change of Beijing based on RS and GIS. D. Beijing Forestry University. (in Chinese).

  • Liu. J., Yang., P, Lv, W. (2014). Pollution characteristics of particulate matter and interpolation analysis of its spatial distribution in the Beijing area. J. Journal of University of Science and Technology Beijing, 36(9), 1269–1279. (in Chinese).

  • Liu, J., Liu, M., Zhuang, D., Zhang, Z., & Deng, X. (2002). Analysis of spatial pattern of land use change in China in the near future. J Science in China (series D), 32(12), 1031–1040 (in Chinese).

    Google Scholar 

  • Liu, J. Y., Liu, M. L., Tian, H. Q., Zhuang, D. F., Zhang, Z. X., Zhang, W., et al. (2005). Spatial and temporal patterns of China’s cropland during 1990-2000: An analysis based on Landsat TM data. Remote Sensing of Environment, 98(4), 442–456.

    Google Scholar 

  • Liu, J., Shao, Q., Yan, X., Fan, J., Deng, X., Zhan, J., et al. (2011). An overview of the Progress and research framework on the effects of land use change upon global climate. J. Advances in Earth Science, 26(10), 1015–1022 (in Chinese).

    Google Scholar 

  • Luo, Y. (2014). Critical issues in land use regression modeling of PM2.5 concentration. D. Hunan: Central South University. (in Chinese).

  • Ministry of Ecology and Environment of the People’s Republic of China (MEEPRC). (2012). Ambient air quality standards, GB 3095–2012. Beijing: S. China Environmental Science Press (in Chinese).

    Google Scholar 

  • Ministry of Ecology and Environment of the People’s Republic of China (MEEPRC). (2018). List of state key monitoring enterprises. EB/OL. http://datacenter.mep.gov.cn/index. (accessed 18.04.15).

  • Nascimento, R. S., Froes, R. E. S., Silva, N. O. C.e., Naveira, R. L. P., Mendes, D. B. C., Neto, W. B., et al. (2010). Comparison between ordinary least squares regression and weighted least squares regression in the calibration of metals present in human milk determined by ICP-OES. Talanta, 80(3), 1102–1109.

  • National Bureau of Statistics of China (NBSC). (2017). China statistical yearbook. EB/OL. http://data.stats.gov.cn/. Accessed 18.07.25).

  • National Development and Reform Commission (NDRC), Ministry of Ecology and Environment of the People's Republic of China (MEEPRC). (2015). Beijing-Tianjin-Hebei cooperation development of ecological and environmental protection planning. Beijing: S. China Environmental Science Press (in Chinese).

    Google Scholar 

  • National Meteorological Informational Center (NMIC), China (2017). China’s surface climate data daily value data set (V3.0). EB/OL. http://data.cma.cn/site/index.html. (accessed 17.04.12).

  • Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3), 115–123.

    Google Scholar 

  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. M., Irwin, E., et al. (2011). Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 92(3), 331–362.

    CAS  Google Scholar 

  • Pielke, R. A. (2002). Overlooked issues in the US national climate and IPCC assessments. Climatic Change, 52(1–2), 1–11.

    Google Scholar 

  • Riley, W. J., & Matson, P. A. (2000). NLOSS: a mechanistic model of denitrified N2O and N-2 evolution from soil. Soil Science, 165(3), 237–249.

    CAS  Google Scholar 

  • Rindfuss, R. R., Walsh, S. J., Turner, B. L., Fox, J., & Mishra, V. (2004). Developing a science of land change: challenges and methodological issues. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 13976–13981.

    CAS  Google Scholar 

  • Romero, H., Ihl, M., Rivera, A., Zalazar, P., & Azocar, P. (1999). Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmospheric Environment, 33(24–25), 4039–4047.

    CAS  Google Scholar 

  • Ross, Z., Jerrett, M., Ito, K., Tempalski, B., & Thurston, G. D. (2007). A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment, 41(11), 2255–2269.

    CAS  Google Scholar 

  • Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E., Mena-Carrasco, M. A., et al. (2011). Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model. Atmospheric Environment, 45(16), 2769–2780.

    CAS  Google Scholar 

  • Saraswat, A., Apte, J. S., Kandlikar, M., Brauer, M., Henderson, S. B., & Marshall, J. D. (2013). Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India. Environmental Science & Technology, 47(22), 12903–12911.

    CAS  Google Scholar 

  • Scarborough, V. L., Dunning, N. P., Tankersley, K. B., Carr, C., Weaver, E., Grazioso, L., Lane, B., Jones, J. G., Buttles, P., Valdez, F., & Lentz, D. L. (2012). Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12408–12413.

    CAS  Google Scholar 

  • Shi, P., Pan, Y., Chen, J., Wang, P., & Zhou, W. (1999). Land use/cover change and environment security in Shenzhen region J. Journal of Natural Resources, 14(04), 293–299 (in Chinese).

    Google Scholar 

  • Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984.

    CAS  Google Scholar 

  • Tanner, R. L., Bairai, S. T., Olszyna, K. J., Valente, M. L., & Valente, R. J. (2005). Diurnal patterns in PM2.5 mass and composition at a background, complex terrain site. Atmospheric Environment, 39(21), 3865–3875.

    CAS  Google Scholar 

  • Tie, X., Wu, D., & Brasseur, G. (2009). Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmospheric Environment, 43(14), 2375–2377.

    CAS  Google Scholar 

  • United States Geological Survey (USGS), USA. (2017). Earth resources observation and science center (EROS). EB/OL. http://glovis.usgs.gov/. (accessed 17.04.12).

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499.

    CAS  Google Scholar 

  • WHO Press, World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. EB/OL. http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf. (accessed 2017.12.17).

  • Wu, J. (2013). Landscape ecology. In R. Leemans (Ed.), Ecological systems: selected entries from the encyclopedia of sustainability science and technology (pp. 179–200). New York: Springer.

    Google Scholar 

  • Wu, J., Liao, X., Peng, J., & Huang, X. (2015a). Simulation and influencing factors of spatial distribution of PM2.5 concentrations in Chongqing. Journal of Environmental Sciences, 36(3), 759–767 (in Chinese).

    CAS  Google Scholar 

  • Wu, J., Li, J., Peng, J., Li, W., Xu, G., & Dong, C. (2015b). Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environmental Science and Pollution Research, 22(9), 7045–7061.

    CAS  Google Scholar 

  • Xu, J., Yang, W., Han, B., Wang, M., Wang, Z., Zhao, Z., et al. (2019). An advanced spatio-temporal model for particulate matter and gaseous pollutants in Beijing, China. Atmospheric Environment, 211, 120–127.

    CAS  Google Scholar 

  • Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3(2), 65–78.

    Google Scholar 

  • Yao, X., Hu, Y., & Liu, Y. (2014). Dust-retention effect of 8 common greening tree species in Beijing. J. Journal of Northwest Forestry University, 29(3), 92–95 (in Chinese).

    Google Scholar 

  • Yu, K., Wang, S., Li, D., & Qiao, Q. (2010). Ecological baseline for Beijing’s urban sprawl: basic ecosystem services and their security patterns. J. City planning, 2(2), 19–24 (in Chinese).

    Google Scholar 

  • Yu, H.-L., Wang, C.-H., Liu, M.-C., & Kuo, Y.-M. (2011). Estimation of fine particulate matter in Taipei using Landuse regression and Bayesian maximum entropy methods. International Journal of Environmental Research and Public Health, 8(6), 2153–2169.

    Google Scholar 

  • Zhang, J., Miao, H., Ouyang, Z., & Wang, X. (2006a). Ambient air quality trend and driving factor analysis since 1980’s in Beijing. J. Acta Scientiae Circumstantiae, 26(11), 1886–1892 (in Chinese).

    CAS  Google Scholar 

  • Zhang, H., Rao, S., Chi, Y., & Jin, T. (2006b). Advances in the impacts of urban landscape pattern on urban air environment. J. Advances in earth science, 21(10), 1025–1032 (in Chinese).

    Google Scholar 

  • Zhang, R., Pu, L., & Liu, Z. (2013). Advances in research on atmospheric environment effects of land use and land cover change. J Areal Research and Development, 32(4), 123–128 (in Chinese).

    Google Scholar 

  • Zhang, X., Ullah, A., & Zhao, S. (2016). On the dominance of mallows model averaging estimator over ordinary least squares estimator. Economics Letters, 142, 69–73.

    Google Scholar 

  • Zhu, C., Li, S., & Ji, P. (2011). Relationships between urban green belt structure and temperature-humidity effect. J. Chinese Journal of Applied Ecology, 22(5), 1255–1260 (in Chinese).

    Google Scholar 

Download references

Funding

This research was funded by the National Social Science Fund of China (Grant 17BGL256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjin Tian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Tian, G. Assessment of the spatio-temporal pattern of PM2.5 and its driving factors using a land use regression model in Beijing, China. Environ Monit Assess 192, 95 (2020). https://doi.org/10.1007/s10661-019-7943-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7943-9

Keywords

Navigation