Skip to main content
Log in

A study of the radiological baseline conditions around the planned Sinop (Turkey) nuclear power plant using the mapping method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 10 December 2019

This article has been updated

Abstract

This study makes a first attempt at a detailed estimation of the background radioactivity level and its distribution at the Sinop nuclear power plant site. The activity concentration levels of 226Ra, 232Th, 40K and 137Cs radionuclides in soil samples collected from 88 locations around Sinop Province, Turkey, in November 2016, were measured using gamma spectrometry. The distributions of radionuclide levels obtained from the results were evaluated using a geostatistical method, and the estimated radiation levels were determined using the ordinary kriging (OK) method, which is the best linear unbiased estimator (BLUE) for unmeasured points. Estimates of distribution results were evaluated using cross-validation diagrams, and it was shown that the OK method could predict radiological distributions for appropriate criteria. Finally, using the kriging parameters, distributions of radiation levels for the entire work area were mapped at a spatial resolution of 100 × 100 m2. These maps show that the natural radionuclides (226Ra, 232Th and 40K) are distributed at higher levels to the southeast of Sinop than in the other regions, and the activity of an artificial radionuclide (137Cs) is high in the interior and northern sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 10 December 2019

    The original version of this article unfortunately contained a mistake.

References

  • Abba, H. T., Hassan, W. M. S. W., Saleh, M. A., Aliyu, A. S., & Ramli, A. T. (2017). Terrestrial gamma radiation dose (TGRD) levels in northern zone of Jos Plateau, Nigeria: Statistical relationship between dose rates and geological formations. Radiation Physics and Chemistry, 140, 167–172. https://doi.org/10.1016/j.radphyschem.2017.01.023.

    Article  CAS  Google Scholar 

  • Baltas, H., Kiris, E., Ustabas, I., Yilmaz, E., Sirin, M., Kuloglu, E., & Gunes, B. E. (2014). Determination of natural radioactivity levels of some concretes and mineral admixtures in Turkey. Asian Journal of Chemistry, 26(13), 3946–3952. https://doi.org/10.14233/ajchem.2014.16045.

    Article  CAS  Google Scholar 

  • Baltas, H., Kiris, E., & Sirin, M. (2017). Determination of radioactivity levels and heavy metal concentrations in seawater, sediment and anchovy (Engraulis encrasicolus) from the Black Sea in Rize, Turkey. Marine Pollution Bulletin, 116(1–2). doi:https://doi.org/10.1016/j.marpolbul.2017.01.016.

  • Baltas, H., Sirin, M., Dalgic, G., & Cevik, U. (2018). An overview of the ecological half-life of the 137Cs radioisotope and a determination of radioactivity levels in sediment samples after Chernobyl in the Eastern Black Sea, Turkey. Journal of Marine Systems, 177, 21–27.

    Article  Google Scholar 

  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health physics, 48(1), 87–95.

    Article  CAS  Google Scholar 

  • Brahmanandhan, G., Selvasekarapandian, S., Malathi, J., Khanna, D., Rajan, M., & Hegde, A. (2007). Natural radioactivity in the soil samples in and around Kudankulam nuclear power plant site. Journal of Radioanalytical and Nuclear Chemistry, 274(2), 361–366.

    Article  CAS  Google Scholar 

  • Cafaro, C., Bossew, P., Giovani, C., & Garavaglia, M. (2014). Definition of radon prone areas in Friuli Venezia Giulia region, Italy, using geostatistical tools. Journal of environmental radioactivity, 138, 208–219.

    Article  CAS  Google Scholar 

  • Clark, I. (1979). Practical geostatistics (Vol. 3). London: Applied Science Publishers.

    Google Scholar 

  • Currie, L. A. (1968). Limits for qualitative detection and quantitative determination, Application to radiochemistry. Analytical chemistry, 40(3), 586–593.

    Article  CAS  Google Scholar 

  • Diggle, P. J., & Ribeiro, P. J., Jr. (2007). Model based geostatistics. New York: Springer.

    Google Scholar 

  • Durusoy, A., & Yildirim, M. (2017). Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey. Journal of Radiation Research and Applied Sciences, 10, 348–352.

    Article  CAS  Google Scholar 

  • El Samad, O., Baydoun, R., Nsouli, B., & Darwish, T. (2013). Determination of natural and artificial radioactivity in soil at North Lebanon province. Journal of Environmental Radioactivity, 125, 36–39.

    Article  Google Scholar 

  • Elsaman, R., Omer, M. A. A., Seleem, E. M. M., & El-Taher, A. (2018). Natural radioactivity levels and radiological hazards in soil samples around Abu Karqas Sugar Factory. Journal of Environmental Science and Technology, 11(1), 28–38.

    Article  CAS  Google Scholar 

  • Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink, G. B. M. (2009). Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35(8), 1711–1721.

    Article  CAS  Google Scholar 

  • Holm, E., & Ballestra, S. (1989). Measurement of radionuclides in food and the environment, A Guidebook. Vienna, Ser: IAEA Tech. Rept.

    Google Scholar 

  • Hung, N. Q., Chuong, H. D., Thanh, T. T., & Van Tao, C. (2016). Intercomparison NaI (Tl) and HPGe spectrometry to studies of natural radioactivity on geological samples. Journal of environmental radioactivity, 164, 197–201.

    Article  Google Scholar 

  • Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.

    Google Scholar 

  • İnal, C., & Yiğit, C. Ö. (2003). Jeodezik uygulamalarda kriging enterpolasyon yönteminin kullanılabilirliği (pp. 177–185). Konya: Coğrafi Bilgi Sistemleri ve Jeodezik Ağlar Çalıştayı.

    Google Scholar 

  • Kam, E., Bozkurt, A., & Ilgar, R. (2010). A study of background radioactivity level for Canakkale, Turkey. Environmental Monitoring and Assessment, 168, 685–690.

    Article  CAS  Google Scholar 

  • Karadeniz, Ö., Karakurt, H., & Akal, C. (2015). Natural radionuclide activities in forest soil horizons of Mount IDA/Kazdagi, Turkey. Environmental Monitoring and Assessment, 187, 319.

    Article  Google Scholar 

  • Kayakökü, H., & Doğru, M. (2017). Radioactivity analysis of soil samples taken from the western and northern shores of Lake Van, Turkey. Applied Radiation and Isotopes, 128, 231–236.

    Article  Google Scholar 

  • Kobya, Y., Taşkın, H., Yeşilkanat, C. M., Çevik, U., Karahan, G., & Çakır, B. (2015). Radioactivity survey and risk assessment study for drinking water in the Artvin province, Turkey. Water, Air, & Soil Pollution, 226(3), 49.

    Article  Google Scholar 

  • Krige, D. G. (1966). Two-dimensional weighted moving average trend surfaces for ore evaluation. South African Institute of Mining and Metallurgy Johannesburg.

  • Krieger, R. (1981). Radioactivity of construction materials. Betonwerk Fertigteil Techn, 47(468).

  • Kucukomeroglu, B., Karadeniz, A., Damla, N., Yesilkanat, C. M., & Cevik, U. (2016). Radiological maps in beach sands along some coastal regions of Turkey. Marine pollution bulletin, 112(1), 255–264.

    Article  CAS  Google Scholar 

  • Kurnaz, A., Kucukomeroglu, B., Damla, N., & Cevik, U. (2011). Radiological maps for Trabzon, Turkey. Journal of Environmental Radioactivity, 102, 393–399.

    Article  CAS  Google Scholar 

  • Leelőssy, Á., Mészáros, R., & Lagzi, I. (2011). Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant. Journal of environmental radioactivity, 102(12), 1117–1121.

    Article  Google Scholar 

  • Li, C., Lu, Z., Ma, T., & Zhu, X. (2009). A simple kriging method incorporating multiscale measurements in geochemical survey. Journal of Geochemical Exploration, 101(2), 147–154.

    Article  CAS  Google Scholar 

  • Lukšienė, B., Marčiulionienė, D., Rožkov, A., Gudelis, A., Holm, E., & Galvonaitė, A. (2012). Distribution of artificial gamma-ray emitting radionuclide activity concentration in the top soil in the vicinity of the Ignalina Nuclear Power Plant and other regions in Lithuania. Science of the total environment, 439, 96–105.

    Article  Google Scholar 

  • Matheron, G. (1970). Random structures and mathematical geology. REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 38(1), 1.

    Article  Google Scholar 

  • McGrath, D., Zhang, C., & Carton, O. T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127(2), 239–248.

    Article  CAS  Google Scholar 

  • Mičieta, K., & Murín, G. (2007). Wild plant species in bio-indication of radioactive-contaminated sites around Jaslovske Bohunice nuclear power plant in the Slovak Republic. Journal of Environmental radioactivity, 93(1), 26–37.

    Article  Google Scholar 

  • Olea, R. A. (1982). Optimization of the high plains aquifer observation network. Kansas: Kansas Geological Survey.

    Google Scholar 

  • Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56–69.

    Article  Google Scholar 

  • Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R news, 5(2), 9–13.

    Google Scholar 

  • Pebesma, E. J., & Wesseling, C. G. (1998). Gstat: A program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24(1), 17–31.

    Article  Google Scholar 

  • Protection, I. C. on R. (1991). ICRP Publication 60: 1990 Recommendations of the international commission on radiological protection. Elsevier Health Sciences.

  • Radiation, U. N. S. C. on the E. of A. (2000). Sources and effects of ionizing radiation: Sources (Vol. 1). United Nations Publications.

  • Sanusi, M. S. M., Ramli, A. T., Gabdo, H. T., Garba, N. N., Heryanshah, A., Wagiran, H., & Said, M. N. (2014). Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia. Journal of environmental radioactivity, 135, 67–74.

    Article  CAS  Google Scholar 

  • Savelieva, E. (2005). Using ordinary kriging to model radioactive contamination data. Applied GIS, 1(2), 1–10.

    Article  Google Scholar 

  • Shohda, A. M., Draz, W. M., Ali, F. A., & Yassien, M. A. (2018). Natural radioactivity levels and evaluation of radiological hazards in some Egyptian ornamental stones. Journal of Radiation Research and Applied Sciences, 11, 323–327.

    Article  CAS  Google Scholar 

  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of environmental radioactivity, 100(1), 49–53.

    Article  CAS  Google Scholar 

  • Taşkın, H., Yeşilkanat, C. M., Kobya, Y., & Çevik, U. (2018). Evaluation and mapping of radionuclides in the terrestrial environment and health hazard due to soil radioactivity in Artvin, Turkey. Arabian Journal of Geosciences, 11(23), 729. https://doi.org/10.1007/s12517-018-4063-8.

    Article  CAS  Google Scholar 

  • Team, R. D. C. (2005). R: A language and environment for statistical computing, reference index version 2.9. 2. Vienna, Austria: R Foundation for Statistical Computing ISBN 3–900051-07-0, URL http://www. rproject. org.

    Google Scholar 

  • Tsai, T.-L., Lin, C.-C., Wang, T.-W., & Chu, T.-C. (2008). Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan. Journal of radiological protection, 28(3), 347.

    Article  Google Scholar 

  • Warnery, E., Ielsch, G., Lajaunie, C., Cale, E., Wackernagel, H., Debayle, C., & Guillevic, J. (2015). Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models. Journal of environmental radioactivity, 139, 140–148.

    Article  CAS  Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (Statistics in Practice).

  • Yeşilkanat, C. M., Kobya, Y., Taşkin, H., & Çevik, U. (2015). Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods: A case study from Artvin, Turkey. Journal of environmental radioactivity, 150, 132–144.

    Article  Google Scholar 

Download references

Funding

This work was supported by Scientific Research Projects Coordination Unit of Recep Tayyip Erdogan University (project number: FBA-2016-661) in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Baltas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to change of Table 1 data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltas, H., Yesilkanat, C.M., Kiris, E. et al. A study of the radiological baseline conditions around the planned Sinop (Turkey) nuclear power plant using the mapping method. Environ Monit Assess 191, 660 (2019). https://doi.org/10.1007/s10661-019-7819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7819-z

Keywords

Navigation