Skip to main content

Advertisement

Log in

Sources, toxicity, and remediation of mercury: an essence review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mercury (Hg) is a pollutant that poses a global threat, and it was listed as one of the ten leading ‘chemicals of concern’ by the World Health Organization in 2017. The review aims to summarize the sources of Hg, its combined effects on the ecosystem, and its remediation in the environment. The flow of Hg from coal to fly ash (FA), soil, and plants has become a serious concern. Hg chemically binds to sulphur-containing components in coal during coal formation. Coal combustion in thermal power plants is the major anthropogenic source of Hg in the environment. Hg is taken up by plant roots from contaminated soil and transferred to the stem and aerial parts. Through bioaccumulation in the plant system, Hg moves into the food chain, resulting in potential health and ecological risks. The world average Hg concentrations reported in coal and FA are 0.01–1 and 0.62 mg/kg, respectively. The mass of Hg accumulated globally in the soil is estimated to be 250–1000 Gg. Several techniques have been applied to remove or minimize elevated levels of Hg from FA, soil, and water (soil washing, selective catalytic reduction, wet flue gas desulphurization, stabilization, adsorption, thermal treatment, electro-remediation, and phytoremediation). Adsorbents such as activated carbon and carbon nanotubes have been used for Hg removal. The application of phytoremediation techniques has been proven as a promising approach in the removal of Hg from contaminated soil. Plant species such as Brassica juncea are potential candidates for Hg removal from soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal, P., Mittal, A., Kumar, M., & Tripathi, S. K. (2008). Mercury exposure in Indian environment due to coal fired thermal power plants and existing legislations. International Journal of Forensic Medicine and Pathology, 1, 41.

    Google Scholar 

  • Ali, M. H., & Al-Qahtani, K. M. (2012). Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. The Egyptian Journal of Aquatic Research, 38, 31–37.

    Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, vol 22. Dordrecht: Springer.

  • Anbia, M., & Dehghan, R. (2014). Functionalized CMK-3 mesoporous carbon with 2-amino-5-mercapto-1, 3, 4-thiadiazole for Hg (II) removal from aqueous media. Journal of Environmental Sciences, 26, 1541–1548.

    CAS  Google Scholar 

  • Ansari, F. A., Gupta, A. K., & Yunus, M. (2011). Fly-ash from coal-fed thermal power plants: Bulk utilization in horticulture–a long-term risk management option. International Journal of Environmental Research, 5, 101–108.

    CAS  Google Scholar 

  • Arbestain, M. C., Rodriguez-Lado, L., Bao, M., & Macias, F. (2009). Assessment of mercury-polluted soils adjacent to an old mercury-fulminate production plant. Applied and Environmental Soil Science. https://doi.org/10.1155/2009/387419.

  • ASTM (2006). ASTM D6414: standard test methods for total mercury in coal and coal combustion residues by acid extraction or wet oxidation/cold vapour atomic absorption.

  • ATSDR. (1999). Toxicological Profile for mercury. Atlanta: US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • Azevedo, R., & Rodriguez, E. (2012). Phytotoxicity of mercury in plants: a review. Journal of Botany, 2012, 16.

    Google Scholar 

  • Bai, X., Li, W., Wang, Y., & Ding, H. (2017). The distribution and occurrence of mercury in Chinese coals. International Journal of Coal Science & Technology, 4, 172–182.

    CAS  Google Scholar 

  • Bailey, E. A., Gray, J. E., & Theodorakos, P. M. (2002). Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska, USA. Geochemistry: Exploration, Environment, Analysis, 2, 275–285.

    CAS  Google Scholar 

  • Bailon, M. X., David, A. S., Park, Y., Kim, E., & Hong, Y. (2018). Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea. Environmental Monitoring and Assessment, 190, 274.

    Google Scholar 

  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47, 693–794.

    CAS  Google Scholar 

  • Belkin, H. E., Tewalt, S. J., Hower, J. C., Stucker, J. D., & O'Keefe, J. M. K. (2009). Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia. International Journal of Coal Geology, 77, 260–268.

    CAS  Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284, 191–203.

    CAS  Google Scholar 

  • Boszke, L., Kowalski, A., Astel, A., Barański, A., Gworek, B., & Siepak, J. (2008). Mercury mobility and bioavailability in soil from contaminated area. Environmental Geology, 55, 1075–1087.

    CAS  Google Scholar 

  • Bradley, M., Barst, B., & Basu, N. (2017). A review of mercury bioavailability in humans and fish. International Journal of Environmental Research and Public Health, 14, 169.

    Google Scholar 

  • Brigden, K., & Santillo, D. (2002). Heavy metal and metalloid content of fly ash collected from the Sual, Mauban and Masinloc coal-fired power plants in the Philippines, 2002. Greenpeace Araştırma Laboratuarı Teknik Notu, 7, 2002.

    Google Scholar 

  • Burmistrz, P., Kogut, K., Marczak, M., & Zwoździak, J. (2016). Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Processing Technology, 152, 250–258.

    CAS  Google Scholar 

  • Cassina, L., Tassi, E., Pedron, F., Petruzzelli, G., Ambrosini, P., & Barbafieri, M. (2012). Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. Journal of Hazardous Materials, 231, 36–42.

    Google Scholar 

  • Chen, X., Xia, X., Wu, S., Wang, F., & Guo, X. (2010). Mercury in urban soils with various types of land use in Beijing, China. Environmental Pollution, 158, 48–54.

    CAS  Google Scholar 

  • Cheng, Z., Wang, H. S., Du, J., Sthiannopkao, S., Xing, G. H., Kim, K. W., Yasin, M. S. M., Hashim, J. H., & Wong, M. H. (2013). Dietary exposure and risk assessment of mercury via total diet study in Cambodia. Chemosphere, 92, 143–149.

    CAS  Google Scholar 

  • Csuros, M., & Csuros, C. (2016). Environmental sampling and analysis for metals. CRC Press. https://doi.org/10.1201/9781420032345.

  • Dabrowski, J. M., Ashton, P. J., Murray, K., Leaner, J. J., & Mason, R. P. (2008). Anthropogenic mercury emissions in South Africa: Coal combustion in power plants. Atmospheric Environment, 42, 6620–6626.

    CAS  Google Scholar 

  • Dahl, O., Pöykiö, R., & Nurmesniemi, H. (2008). Concentrations of heavy metals in fly ash from a coal-fired power plant with respect to the new Finnish limit values. Journal of Material Cycles and Waste Management, 10, 87–92.

    CAS  Google Scholar 

  • Dai, S., Ren, D., Chou, C. L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3–21.

    CAS  Google Scholar 

  • Deng, S., Zhang, C., Liu, Y., Cao, Q., Xu, Y. Y., Wang, H. L., & Zhang, F. (2014). A full-scale field study on chlorine emission of pulverized coal-fired power plants in China. Research of Environmental Sciences, 27, 127–133.

    CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1–31.

    CAS  Google Scholar 

  • Dołęgowska, S., & Michalik, A. (2019). The use of a geostatistical model supported by multivariate analysis to assess the spatial distribution of mercury in soils from historical mining areas: Karczówka Mt., Miedzianka Mt., and Rudki (south-central Poland). Environmental Monitoring and Assessment, 191, 302.

    Google Scholar 

  • Donatello, S., Fernández-Jiménez, A., & Palomo, A. (2012). An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements. Journal of Hazardous Materials, 213, 207–215.

    Google Scholar 

  • Dragović, S., Ćujić, M., Slavković-Beškoski, L., Gajić, B., Bajat, B., Kilibarda, M., & Onjia, A. (2013). Trace element distribution in surface soils from a coal burning power production area: A case study from the largest power plant site in Serbia. Catena, 104, 288–296.

    Google Scholar 

  • Dziok, T., Strugała, A., Rozwadowski, A., & Macherzyński, M. (2015). Studies of the correlation between mercury content and the content of various forms of sulfur in Polish hard coals. Fuel, 159, 206–213.

    CAS  Google Scholar 

  • EA. (2009). Contaminants in soil: updated collation of toxicological data and intake values for humans. Mercury. Science Report SC050021/SR TOX7. Bristol: Environment Agency.

  • El Mahmoud-Hamed, M. S., Montesdeoca-Esponda, S., Santana-Del Pino, A., Zamel, M. L., Brahim, M., T’feil, H., Santana-Rodiguez, J. J., Sidoumou, Z., & Sidi’Ahmed-Kankou, M. (2019). Distribution and health risk assessment of cadmium, lead, and mercury in freshwater fish from the right bank of Senegal River in Mauritania. Environmental Monitoring and Assessment, 191, 493.

    Google Scholar 

  • Fernández-Martínez, R., Loredo, J., Ordóñez, A., & Rucandio, M. I. (2005). Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Science of The Total Environment, 346, 200–212.

    Google Scholar 

  • Fernández-Martínez, R., Larios, R., Gómez-Pinilla, I., Gómez-Mancebo, B., López-Andrés, S., Loredo, J., Ordóñez, A., & Rucandio, I. (2015). Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma, 253, 30–38.

    Google Scholar 

  • Figueira, P., Lopes, C. B., Daniel-da-Silva, A. L., Pereira, E., Duarte, A. C., & Trindade, T. (2011). Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Research, 45, 5773–5784.

    CAS  Google Scholar 

  • Font, O., Córdoba, P., Leiva, C., Romeo, L. M., Bolea, I., Guedea, I., Moreno, N., Querol, X., Fernandez, C., & Díez, L. I. (2012). Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. Fuel, 95, 272–281.

    CAS  Google Scholar 

  • Fthenakis, V. M., Lipfert, F. W., Moskowitz, P. D., & Saroff, L. (1995). An assessment of mercury emissions and health risks from a coal-fired power plant. Journal of Hazardous Materials, 44, 267–283.

    CAS  Google Scholar 

  • Gall, J. E., Boyd, R. S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187, 201.

    Google Scholar 

  • Genthe, B., Kapwata, T., Le Roux, W., Chamier, J., & Wright, C. Y. (2018). The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere, 199, 1–9.

    CAS  Google Scholar 

  • Ghosh, S. B., Das, M. C., Ghosh, B., Roy, R. R. P., & Banerjee, N. N. (1994). Mercury in Indian coals. Journal of Chemical Technology, 1, 237-240.

  • Gil, C., Ramos-Miras, J., Roca-Pérez, L., & Boluda, R. (2010). Determination and assessment of mercury content in calcareous soils. Chemosphere, 78, 409–415.

    CAS  Google Scholar 

  • Gnamuš, A., Byrne, A. R., & Horvat, M. (2000). Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environmental Science & Technology, 34, 3337–3345.

    Google Scholar 

  • Gomes, M. V. T., de Souza, R. R., Teles, V. S., & Mendes, É. A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.

    CAS  Google Scholar 

  • Goodarzi, F. (2006). Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel, 85, 1418–1427.

    CAS  Google Scholar 

  • Gosar, M., Šajn, R., & Biester, H. (2006). Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Science of The Total Environment, 369, 150–162.

    CAS  Google Scholar 

  • Gustin, M. S. (2003). Are mercury emissions from geologic sources significant? A status report. Science of the Total Environment, 304, 153–167.

    CAS  Google Scholar 

  • Ha, E., Basu, N., Bose-O’Reilly, S., Dorea, J. G., McSorley, E., Sakamoto, M., & Chan, H. M. (2016). Current progress on understanding the impact of mercury on human health. Environmental Research, 152, 419–433.

    Google Scholar 

  • Habuda-Stanić, M., & Nujić, M. (2015). Arsenic removal by nanoparticles: a review. Environmental Science and Pollution Research, 22, 8094–8123.

    Google Scholar 

  • Halbach, K., Mikkelsen, Ø., Berg, T., & Steinnes, E. (2017). The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere, 188, 567–574.

    CAS  Google Scholar 

  • Han, Y., Kingston, H. M., Boylan, H. M., Rahman, G. M., Shah, S., Richter, R. C., et al. (2003). Speciation of mercury in soil and sediment by selective solvent and acid extraction. Analytical and Bioanalytical Chemistry, 375, 428–436.

    CAS  Google Scholar 

  • Hansen, H. K., Ottosen, L. M., Kliem, B. K., & Villumsen, A. (1997). Electrodialytic remediation of soils polluted with Cu, Cr, Hg, Pb and Zn. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 70, 67–73.

    CAS  Google Scholar 

  • Henriques, B., Rocha, L. S., Lopes, C. B., Figueira, P., Monteiro, R. J., Duarte, A. C., Pardal, M. A., & Pereira, E. (2015). Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chemical Engineering Journal, 281, 759–770.

    CAS  Google Scholar 

  • Hossain, M. N., Paul, S. K., & Hasan, M. M. (2015). Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh. Environmental Monitoring and Assessment, 187, 202.

    Google Scholar 

  • Hower, J. C., Senior, C. L., Suuberg, E. M., Hurt, R. H., Wilcox, J. L., & Olson, E. S. (2010). Mercury capture by native fly ash carbons in coal-fired power plants. Progress in Energy and Combustion Science, 36, 510–529.

    CAS  Google Scholar 

  • Hower, J. C., Clack, H. L., Hood, M. M., Hopps, S. G., & Thomas, G. H. (2017). Impact of coal source changes on mercury content in fly ash: Examples from a Kentucky power plant. International Journal of Coal Geology, 170, 2–6.

    CAS  Google Scholar 

  • Hu, Y., & Cheng, H. (2016). Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations. Environmental Pollution, 218, 1209–1221.

    CAS  Google Scholar 

  • Hu, W., Huang, B., Tian, K., Holm, P. E., & Zhang, Y. (2017). Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk. Chemosphere, 167, 82–90.

    CAS  Google Scholar 

  • Huang, X., Hu, J., Qin, F., Quan, W., Cao, R., Fan, M., & Wu, X. (2017). Heavy metal pollution and ecological assessment around the Jinsha Coal-Fired Power Plant (China). International Journal of Environmental Research and Public Health, 14, 1589.

    Google Scholar 

  • Hussein, H. S., Ruiz, O. N., Terry, N., & Daniell, H. (2007). Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environmental Science & Technology, 41, 8439–8446.

    CAS  Google Scholar 

  • Isaksson, R., Balogh, S. J., & Farris, M. A. (2007). Accumulation of mercury by the aquatic plant Lemna minor. International Journal of Environmental Studies, 64, 189–194.

    CAS  Google Scholar 

  • Jagtap, R., & Maher, W. (2015). Measurement of mercury species in sediments and soils by HPLC–ICPMS. Microchemical Journal, 121, 65–98.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. Washington DC: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-32714-1.

  • Kolker, A., Panov, B. S., Panov, Y. B., Landa, E. R., Conko, K. M., Korchemagin, V. A., Shendrik, T., & McCord, J. D. (2009). Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine. International Journal of Coal Geology, 79, 83–91.

    CAS  Google Scholar 

  • Kostova, I., Vassileva, C., Dai, S., Hower, J. C., & Apostolova, D. (2013). Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 116, 227–235.

    Google Scholar 

  • Lafabrie, C., Major, K. M., Major, C. S., & Cebrián, J. (2011). Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis. Chemosphere, 82, 1393–1400.

    CAS  Google Scholar 

  • Li, Y., Yang, L., Ji, Y., Sun, H., & Wang, W. (2009). Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China. Environmental Geochemistry and Health, 31, 617–628.

    Google Scholar 

  • Li, Z., Wu, L., Liu, H., Lan, H., & Qu, J. (2013). Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chemical Engineering Journal, 228, 925–934.

    CAS  Google Scholar 

  • Li, R., Wu, H., Ding, J., Fu, W., Gan, L., & Li, Y. (2017). Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Scientific Reports, 7, 46545.

    CAS  Google Scholar 

  • Liang, Y., Dongxing, Y. U. A. N., Min, L. U., Zhenbin, G. O. N. G., Xiyao, L. I. U., & Zhang, Z. (2009). Distribution characteristics of total mercury and methylmercury in the topsoil and dust of Xiamen, China. Journal of Environmental Sciences, 21, 1400–1408.

    CAS  Google Scholar 

  • Lim, J. M., Salido, A. L., & Butcher, D. J. (2004). Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchemical Journal, 76, 3–9.

    CAS  Google Scholar 

  • Lin, C. J., Gustin, M. S., Singhasuk, P., Eckley, C., & Miller, M. (2010). Empirical models for estimating mercury flux from soils. Environmental Science & Technology, 44, 8522–8528.

    CAS  Google Scholar 

  • Liu, Z., Wang, L. A., Xu, J., Ding, S., Feng, X., & Xiao, H. (2017). Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecological Engineering, 106, 273–278.

    Google Scholar 

  • Lomonte, C., Gregory, D., Baker, A. J., & Kolev, S. D. (2008). Comparative study of hotplate wet digestion methods for the determination of mercury in biosolids. Chemosphere, 72, 1420–1424.

    CAS  Google Scholar 

  • Lu, X., Jiang, J., Sun, K., Wang, J., & Zhang, Y. (2014). Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Marine Pollution Bulletin, 78, 69–76.

    CAS  Google Scholar 

  • Luo, W., Lu, Y., Wang, B., Tong, X., Wang, G., Shi, Y., Wang, T., & Giesy, J. P. (2009). Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environmental Monitoring and Assessment, 158, 507–517.

    CAS  Google Scholar 

  • Luo, G., Ma, J., Han, J., Yao, H., Xu, M., Zhang, C., Chen, G., Gupta, R., & Xu, Z. (2013). Hg occurrence in coal and its removal before coal utilization. Fuel, 104, 70–76.

    CAS  Google Scholar 

  • Luo, Y., Duan, L., Wang, L., Xu, G., Wang, S., & Hao, J. (2014). Mercury concentrations in forest soils and stream waters in northeast and south China. Science of the Total Environment, 496, 714–720.

    CAS  Google Scholar 

  • Lusilao-Makiese, J., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., & Cukrowska, E. M. (2012). Speciation of mercury in South African coals. Toxicological and Environmental Chemistry, 94, 688–706.

    Google Scholar 

  • Ma, F., Peng, C., Hou, D., Wu, B., Zhang, Q., Li, F., & Gu, Q. (2015). Citric acid facilitated thermal treatment: an innovative method for the remediation of mercury contaminated soil. Journal of Hazardous Materials, 300, 546–552.

    CAS  Google Scholar 

  • Mahajan, V. E., Yadav, R. R., Dakshinkar, N. P., Dhoot, V. M., Bhojane, G. R., Naik, M. K., Shrivastava, P., Naoghare, P. K., & Krishnamurthi, K. (2012). Influence of mercury from fly ash on cattle reared nearby thermal power plant. Environmental Monitoring and Assessment, 184, 7365–7372.

    CAS  Google Scholar 

  • Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58–63.

    CAS  Google Scholar 

  • Martín, J. A. R., & Nanos, N. (2016). Soil as an archive of coal-fired power plant mercury deposition. Journal of Hazardous Materials, 308, 131-138.

  • Matsuyama, A., Yano, S., Taninaka, T., Kindaichi, M., Sonoda, I., Tada, A., & Akagi, H. (2018). Chemical characteristics of dissolved mercury in the pore water of Minamata Bay sediments. Marine Oollution Bulletin, 129, 503–511.

    CAS  Google Scholar 

  • Mbanga, O., Ncube, S., Tutu, H., Chimuka, L., & Cukrowska, E. (2019). Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environmental Monitoring and Assessment, 191, 186.

    Google Scholar 

  • Meng, X., Hua, Z., Dermatas, D., Wang, W., & Kuo, H. Y. (1998). Immobilization of mercury (II) in contaminated soil with used tire rubber. Journal of Hazardous Materials, 57, 231–241.

    CAS  Google Scholar 

  • Meng, M., Li, B., Shao, J. J., Wang, T., He, B., Shi, J. B., Ye, Z. H., & Jiang, G. B. (2014). Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environmental Pollution, 184, 179–186.

    CAS  Google Scholar 

  • Millán, R., Lominchar, M. A., Rodríguez-Alonso, J., Schmid, T., & Sierra, M. J. (2014). Riparian vegetation role in mercury uptake (Valdeazogues River, Almadén, Spain). Journal of Geochemical Exploration, 140, 104–110.

    Google Scholar 

  • Mishra, V. K., Tripathi, B. D., & Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172, 749–754.

    CAS  Google Scholar 

  • Montoya, A. J., Lena, J. C., & Windmöller, C. C. (2019). Adsorption of gaseous elemental mercury on soils: Influence of chemical and/or mineralogical characteristics. Ecotoxicology and Environmental Safety, 170, 98–106.

    CAS  Google Scholar 

  • Mukherjee, A. B., Zevenhoven, R., Bhattacharya, P., Sajwan, K. S., & Kikuchi, R. (2008). Mercury flow via coal and coal utilization by-products: a global perspective. Resources, Conservation and Recycling, 52, 571–591.

    Google Scholar 

  • Müller, A. K., Westergaard, K., Christensen, S., & Sørensen, S. J. (2001). The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiology Ecology, 36, 11–19.

    Google Scholar 

  • Nagpal, N., Bettiol, S. S., Isham, A., Hoang, H., & Crocombe, L. A. (2017). A review of mercury exposure and health of dental personnel. Safety and Health at Work, 8, 1–10.

    Google Scholar 

  • Noda, N., & Ito, S. (2018). Mercury Partitioning in Coal-fired Power Plants in Japan. Journal of the Japan Institute of Energy, 97, 342–347.

    Google Scholar 

  • Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., & Selin, N. E. (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47, 116-140.

  • O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F. M. G., & Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747–761.

    CAS  Google Scholar 

  • Ohki, A., Taira, M., Hirakawa, S., Haraguchi, K., Kanechika, F., Nakajima, T., & Takanashi, H. (2014). Determination of mercury in various coals from different countries by heat-vaporization atomic absorption spectrometry: Influence of particle size distribution of coal. Microchemical Journal, 114, 119–124.

    CAS  Google Scholar 

  • Ojea-Jiménez, I., López, X., Arbiol, J., & Puntes, V. (2012). Citrate-coated gold nanoparticles as smart scavengers for mercury (II) removal from polluted waters. ACS Nano, 6, 2253–2260.

    Google Scholar 

  • Omine, N., Romero, C. E., Kikkawa, H., Wu, S., & Eswaran, S. (2012). Study of elemental mercury re-emission in a simulated wet scrubber. Fuel., 91, 93–101.

    CAS  Google Scholar 

  • Ostos, C., Pérez-Rodríguez, F., Arroyo, B. M., & Moreno-Rojas, R. (2015). Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain. Journal of Food Composition and Analysis, 37, 136–142.

    CAS  Google Scholar 

  • Özkul, C. (2016). Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environmental Monitoring and Assessment, 188, 284.

    Google Scholar 

  • Palmieri, H. E., Nalini, H. A., Jr., Leonel, L. V., Windmöller, C. C., Santos, R. C., & de Brito, W. (2006). Quantification and speciation of mercury in soils from the Tripuí Ecological Station, Minas Gerais, Brazil. Science of the Total Environment, 368, 69–78.

    CAS  Google Scholar 

  • Pant, P., Allen, M., & Tansel, B. (2010). Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from oak ridge. International Journal of Phytoremediation, 13, 168–176.

    Google Scholar 

  • Park, K. S., Seo, Y. C., Lee, S. J., & Lee, J. H. (2008). Emission and speciation of mercury from various combustion sources. Powder Technology, 180, 151–156.

    CAS  Google Scholar 

  • Park, C. H., Eom, Y., Lee, L. J. E., & Lee, T. G. (2013). Simple and accessible analytical methods for the determination of mercury in soil and coal samples. Chemosphere, 93, 9–13.

    CAS  Google Scholar 

  • Pastrana-Corral, M. A., Wakida, F. T., Temores-Peña, J., Rodriguez-Mendivil, D. D., García-Flores, E., Piñon-Colin, T. D. J., & Quiñonez-Plaza, A. (2017). Heavy metal pollution in the soil surrounding a thermal power plant in Playas de Rosarito, Mexico. Environmental Earth Sciences, 76, 583.

    Google Scholar 

  • Patel, K. S., Sharma, R., Dahariya, N. S., Yadav, A., Blazhev, B., Matini, L., & Hoinkis, J. (2015). Heavy metal contamination of tree leaves. American Journal of Analytical Chemistry, 6, 687–693.

    CAS  Google Scholar 

  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52, 199–223.

    CAS  Google Scholar 

  • Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal, D. L., & Benson, S. A. (2003). Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 82, 89–165.

    CAS  Google Scholar 

  • Pazos, M., Rosales, E., Alcántara, T., Gómez, J., & Sanromán, M. A. (2010). Decontamination of soils containing PAHs by electroremediation: a review. Journal of Hazardous Materials, 177, 1–11.

    CAS  Google Scholar 

  • Piao, H., & Bishop, P. L. (2006). Stabilization of mercury-containing wastes using sulfide. Environmental Pollution, 139, 498–506.

    CAS  Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., & Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964.

    CAS  Google Scholar 

  • Pöykiö, R., Mäkelä, M., Watkins, G., Nurmesniemi, H., & Olli, D. A. H. L. (2016). Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. Transactions of Nonferrous Metals Society of China, 26, 256–264.

    Google Scholar 

  • Pudasainee, D., Kim, J. H., & Seo, Y. C. (2009). Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. Atmospheric Environment, 43, 6254–6259.

    CAS  Google Scholar 

  • Qiu, G., Feng, X., Wang, S., & Xiao, T. (2006). Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China. Science of the Total Environment, 368, 56–68.

    CAS  Google Scholar 

  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191, 419.

    Google Scholar 

  • Rai, V. K., Raman, N. S., & Choudhary, S. K. (2013). Mercury in thermal power plants–a case study. International Journal of Pure &Applied Bioscience, 1, 31–37.

    Google Scholar 

  • Raj, D., & Maiti, S. K. (2019). Bioaccumulation of potentially toxic elements in tree and vegetable species with associated health and ecological risks: a case study from a thermal power plant, Chandrapura, India. Rendiconti Lincei. Scienze Fisiche e Naturali. https://doi.org/10.1007/s12210-019-00831-7.

  • Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal, 23, 767–787.

    CAS  Google Scholar 

  • Raju, A., Singh, A., Srivastava, N., Singh, S., Jigyasu, D. K., & Singh, M. (2019). Mapping human health risk by geostatistical method: a case study of mercury in drinking groundwater resource of the central Ganga alluvial plain, northern India. Environmental Monitoring and Assessment, 191, 298.

    Google Scholar 

  • Rasulov, O., Zacharová, A., & Schwarz, M. (2017). Determination of total mercury in aluminium industrial zones and soil contaminated with red mud. Environmental Monitoring and Assessment, 189, 388.

    Google Scholar 

  • Reis, A. T., Rodrigues, S. M., Davidson, C. M., Pereira, E., & Duarte, A. C. (2010). Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere, 81, 1369–1377.

    CAS  Google Scholar 

  • Reis, A. T., Lopes, C. B., Davidson, C. M., Duarte, A. C., & Pereira, E. (2015). Extraction of available and labile fractions of mercury from contaminated soils: The role of operational parameters. Geoderma, 259, 213–223.

    Google Scholar 

  • Ren, D. Y., Zhao, F. H., Dai, S. F., Zhang, J. Y., & Luo, K. L. (2006). Geochemistry of trace elements in coals (pp. 268–279). Beijing: The Science Press.

    Google Scholar 

  • Renneberg, A. J., & Dudas, M. J. (2001). Transformations of elemental mercury to inorganic and organic forms in mercury and hydrocarbon co-contaminated soils. Chemosphere, 45, 1103–1109.

    CAS  Google Scholar 

  • Rodriguez, L., Rincón, J., Asencio, I., & Rodríguez-Castellanos, L. (2007). Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. International Journal of Phytoremediation, 9, 1–13.

    CAS  Google Scholar 

  • Sahi, C., Singh, A., Kumar, K., Blumwald, E., & Grover, A. (2006). Salt stress response in rice: genetics, molecular biology, and comparative genomics. Functional & Integrative Genomics, 6, 263–284.

    CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468.

    CAS  Google Scholar 

  • Sanchez-Rodas, D., Corns, W. T., Chen, B., & Stockwell, P. B. (2010). Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. Journal of Analytical Atomic Spectrometry, 25, 933–946.

    CAS  Google Scholar 

  • Shiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., & Su, Y. (2009). Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicology and Environmental Safety, 72, 619–625.

    CAS  Google Scholar 

  • Sierra, C., Gallego, J. R., Afif, E., Menéndez-Aguado, J. M., & González-Coto, F. (2010). Analysis of soil washing effectiveness to remediate a brownfield polluted with pyrite ashes. Journal of Hazardous Materials, 180, 602–608.

    CAS  Google Scholar 

  • Soares, L. C., Egreja Filho, F. B., Linhares, L. A., Windmoller, C. C., & Yoshida, M. I. (2015). Accumulation and oxidation of elemental mercury in tropical soils. Chemosphere, 134, 181–191.

    CAS  Google Scholar 

  • Sorkhoh, N. A., Ali, N., Al-Awadhi, H., Dashti, N., Al-Mailem, D. M., Eliyas, M., & Radwan, S. S. (2010). Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal. Ecotoxicology and Environmental Safety, 73, 1998–2003.

    CAS  Google Scholar 

  • Spahić, M. P., Sakan, S., Cvetković, Ž., Tančić, P., Trifković, J., Nikić, Z., & Manojlović, D. (2018). Assessment of contamination, environmental risk, and origin of heavy metals in soils surrounding industrial facilities in Vojvodina, Serbia. Environmental Monitoring and Assessment, 190, 208.

    Google Scholar 

  • Spahić, M. P., Manojlović, D., Tančić, P., Cvetković, Ž., Nikić, Z., Kovačević, R., & Sakan, S. (2019). Environmental impact of industrial and agricultural activities to the trace element content in soil of Srem (Serbia). Environmental Monitoring and Assessment, 191, 133.

    Google Scholar 

  • Steinnes, E. (1995). Mercury. In B. J. Alloway (Ed.), Heavy Metals in Soils (2nd ed.). London: Blackie Academic & Professional..

    Google Scholar 

  • Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M., & Jacob, D. J. (2011). All-time releases of mercury to the atmosphere from human activities. Environmental Science & Technology, 45, 10485–10491.

    CAS  Google Scholar 

  • Streets, D. G., Lu, Z., Levin, L., ter Schure, A. F., & Sunderland, E. M. (2018). Historical releases of mercury to air, land, and water from coal combustion. Science of the Total Environment, 615, 131-140.

  • Su, Y., Han, F. X., Chen, J., Sridhar, B. M., & Monts, D. L. (2008). Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). International Journal of Phytoremediation, 10, 547–560.

    Google Scholar 

  • Subirés-Muñoz, J. D., García-Rubio, A., Vereda-Alonso, C., Gómez-Lahoz, C., Rodríguez-Maroto, J. M., García-Herruzo, F., & Paz-Garcia, J. M. (2011). Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Separation and Purification Technology, 79, 151–156.

    Google Scholar 

  • Tan, Y., Mortazavi, R., Dureau, B., & Douglas, M. A. (2004). An investigation of mercury distribution and speciation during coal combustion. Fuel, 83, 2229–2236.

    CAS  Google Scholar 

  • Tang, X. Y., & Huang, W. H. (2004). Trace elements in Chinese coal. Beijing: The commercial press (In Chinese).

    Google Scholar 

  • Tomašević, M., Rajšić, S., Đorđević, D., Tasić, M., Krstić, J., & Novaković, V. (2004). Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters., 2, 151–154.

    Google Scholar 

  • Toole-O'Neil, B., Tewalt, S. J., Finkelman, R. B., & Akers, D. J. (1999). Mercury concentration in coal—unraveling the puzzle. Fuel, 78, 47–54.

    CAS  Google Scholar 

  • UN. (1997). Glossary of environment statistics, studies in methods. NY: United Nations New York.

    Google Scholar 

  • UNEP. (2013). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. Geneva: United Nations Environment Programme.

    Google Scholar 

  • UNEP. (2014). Assessment of the Mercury Content in Coal fed to Power Plant and study of Mercury Emissions from the Sector in India. UNEP Chemicals Branch, Geneva, Switzerland. http://www.unep.org/chemicalsandwaste/Portals/9/Mercury/REPORT%20FINAL%2019%20March%202014.pdf. Accessed 11 Feb 2019.

  • USEPA. (1991). Determination of Mercury in Tissues by Cold Vapor Atomic Absorption Spectrometry. Cincinnati, Ohio. 906R1102, Accessed 11 Feb 2019.

  • USEPA. (2002). Control of Mercury Emissions From Coal-fired Electric Utility Boilers, Interim Report Including Errata Data, 3-21-02, EPA-600/R-01-109, Accessed 11 Feb 2019.

  • USEPA. (2007). Treatment technologies for mercury in soil, waste, and water. US EPA, Office of Superfund Remediation and Technology Innovation Washington, DC 20460, EPA-542-R-07-003. Accessed 11 Feb 2019.

  • USEPA. (2007a). Method 7471B, Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique), revision 2. https://www.epa.gov/sites/production/files/2015-12/documents/7471b.pdf. Accessed 11 Feb 2019.

  • Virkutyte, J., Sillanpää, M., & Latostenmaa, P. (2002). Electrokinetic soil remediation—critical overview. Science of the Total Environment, 289, 97–121.

    CAS  Google Scholar 

  • Wang, S., & Luo, K. (2017). Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China. Atmospheric Environment, 162, 45–54.

    CAS  Google Scholar 

  • Wang, D., Shi, X., & Wei, S. (2003). Accumulation and transformation of atmospheric mercury in soil. Science of the Total Environment, 304, 209–214.

    CAS  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites–a review. Journal of Hazardous Materials, 221, 1–18.

    Google Scholar 

  • Wang, X., Liu, X., Han, Z., Zhou, J., Xu, S., Zhang, Q., Chen, H., Bo, W., & Xia, X. (2015). Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China. Journal of Geochemical Exploration, 154, 32–48.

    CAS  Google Scholar 

  • Wang, S., Zhong, T., Chen, D., & Zhang, X. (2016). Spatial distribution of mercury (Hg) concentration in agricultural soil and its risk assessment on food safety in China. Sustainability, 8, 795.

    Google Scholar 

  • WHO (1993). Guidelines for Drinking-Water Quality. Vol. 1: Recommendations. 2d ed. Geneva. Accessed 11 Feb 2019.

  • WHO (2003). Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects. http://www.who.int/ipcs/publications/cicad/en/cicad50.pdf. Accessed 11 Feb 2019.

  • WHO (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization. Accessed 11 Feb 2019.

  • Xinmin, Z., Kunli, L., Xinzhang, S., Jian'an, T., & Yilun, L. (2006). Mercury in the topsoil and dust of Beijing City. Science of the Total Environment, 368, 713–722.

    Google Scholar 

  • Xu, J., Bravo, A. G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., & Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environment International, 74, 42–53.

    CAS  Google Scholar 

  • Xun, Y., Feng, L., Li, Y., & Dong, H. (2017). Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere, 189, 161–170.

    CAS  Google Scholar 

  • Yao, D. X., Meng, J., & Zhang, Z. G. (2010). Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area. Journal of Coal Science and Engineering (China), 16, 316-319.

  • Yin, Y., Allen, H. E., Li, Y., Huang, C. P., & Sanders, P. F. (1996). Adsorption of mercury (II) by soil: effects of pH, chloride, and organic matter. Journal of Environmental Quality, 25, 837–844.

    CAS  Google Scholar 

  • Yu, J. G., Yue, B. Y., Wu, X. W., Liu, Q., Jiao, F. P., Jiang, X. Y., & Chen, X. Q. (2016). Removal of mercury by adsorption: a review. Environmental Science and Pollution Research, 23, 5056–5076.

    CAS  Google Scholar 

  • Yudovich, Y. E., & Ketris, M. P. (2005a). Mercury in coal: a review. Part 1. Geochemistry. International Journal of Coal Geology, 62, 107–134.

    CAS  Google Scholar 

  • Yudovich, Y. E., & Ketris, M. P. (2005b). Mercury in coal: a review Part 2. Coal use and environmental problems. International Journal of Coal Geology, 62, 135–165.

    CAS  Google Scholar 

  • Zalups, R. K. (2000). Molecular interactions with mercury in the kidney. Pharmacological Reviews., 52, 113–144.

    CAS  Google Scholar 

  • Zhang, H., Chen, J., Zhu, L., Yang, G., & Li, D. (2014). Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China. Journal of Geochemical Exploration, 144, 312–319.

    CAS  Google Scholar 

  • Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M., Yang, H., Hao, J., & Liu, X. (2015). Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technolog, 49, 3185–3194.

    CAS  Google Scholar 

  • Zhao, S., Duan, Y., Yao, T., Liu, M., Lu, J., Tan, H., Wang, X., & Wu, L. (2017). Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant. Fuel, 199, 653–661.

    CAS  Google Scholar 

  • Zheng, L., Liu, G., & Chou, C. L. (2007). The distribution, occurrence and environmental effect of mercury in Chinese coals. Science of the Total Environment, 384, 374–383.

    CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Ministry of Human Resource and Development (MHRD), Government of India, for providing scholarship. The authors also acknowledge the Indian Institute of Technology (Indian School of Mines), Dhanbad (India), for providing basic research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Maiti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, D., Maiti, S.K. Sources, toxicity, and remediation of mercury: an essence review. Environ Monit Assess 191, 566 (2019). https://doi.org/10.1007/s10661-019-7743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7743-2

Keywords

Navigation