Skip to main content

Advertisement

Log in

Carbon storage potential of tropical wetland forests of South Asia: a case study from Bhitarkanika Wildlife Sanctuary, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mangroves are halophytic vegetation comprising the tropics. Bhitarkanika Wildlife Sanctuary, being a local hotspot of mangrove, acts as carbon sink for mitigating increased CO2 level in the atmosphere. The study estimated total biomass and total carbon in five selected stations of this Wildlife Sanctuary in reference to relevant ambient parameters of water (temperature, pH, and salinity) and soil (temperature, pH, electrical conductivity, bulk density, organic carbon, organic matter, and texture) seasonally. The average values for total biomass and total carbon measured in this study are 866.67 ± 166.10 t ha−1 and 444.68 ± 83.70 t ha−1, respectively. The average soil organic carbon recorded was 3.73 ± 2.10 t ha−1 and average litter carbon was 0.59 ± 0.20 t ha−1, respectively. Among the components, above-ground biomass constitutes 55–70% of total biomass and total carbon. Significant positive relationship between biomass (above-ground biomass, below-ground biomass, litter biomass, total biomass) and carbon (above-ground carbon, below-ground carbon, litter carbon, soil organic carbon, and total carbon) was obtained with respect to selected physico-chemical variables which proved the significant effect of change in biomass and carbon to changing parameters of the ambient media in the study area. The analysis of variance computed between season and station has also proved the above phenomenon. The study revealed the mangrove carbon storage potential of 21 mangrove species, which is at par with the biomass of South-east Asia and South west Pacific countries. Hence, mangrove conservation programs like REDD+ can be adopted in this wildlife sanctuary being the 2nd largest mangrove patch of India after Sundarbans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abino, A. C., Castillo, J. A. A., & Lee, Y. J. (2014). Assessment of species diversity, biomass and carbon sequestration potential of a natural mangrove stand in Samar, the Philippines. Forest Science and Technology, 10(1), 2–8.

    Google Scholar 

  • Alongi, D. M. (2002). Present status and future of the world’s mangrove forests. Environmental Conservation, 29(3), 331–349.

    Google Scholar 

  • Alongi, D. M. (2011). Carbon payments for mangrove conservation: Ecosystem constraints and uncertainties of sequestration potential. Environmental Science and Policy, 14(4), 462–470.

    Google Scholar 

  • Arthur, R. (2000). Coral bleaching and mortality in three Indian reef regions during an El Nino southern oscillation event. Current Science, 79, 12.

    Google Scholar 

  • Azalan, A., Aweng, E. R., Ibrahim, C. O., & Noorhaidah, A. (2012). Correlation between soil organic matter, total organic matter and water content with climate and depths of soil at different land use in Kelantan, Malaysia. Journal of Applied Sciences and Management, 16(4), 353–358.

    Google Scholar 

  • Bal, G., Mallik, K., Sahu, S. S., & Banerjee, K. (2017). Study on the above ground biomass and carbon of the selective mangrove species of Bhitarkanika wildlife sanctuary, Odisha. In S. Murugan, P. Balasubramanian, & S. Rangabhashiyam (Eds.), Proceedings of national conference on waste to energy carbon capture and storage (pp. 328–336). Bhubaneswar: Elite Publications.

    Google Scholar 

  • Banerjee, L. K., & Rao, T. A. (1990). Mangrove of Orissa coast and their ecology. Dehradun: Bishen Singh and Mahendra Pal Singh Publishing House.

    Google Scholar 

  • Banerjee, K., Sengupta, K., Raha, A., & Mitra, A. (2013). Salinity based allometric equations for biomass estimation of Sunderban mangrove. Biomass and Bioenergy, 56, 382–391.

    Google Scholar 

  • Banerjee, K., Bal, G., Pal, N., Amin, G., & Mitra, A. (2017a). How soil texture affects the organic carbon load in the mangrove ecosystem? A case study in Bhitrarkanika, Odisha. In V. P. Singh, S. Yadav, & R. N. Yadava (Eds.), Environmental pollution. Collage Station: USA, Texas A & M, University.

    Google Scholar 

  • Banerjee, K., Bal, G., Pal, N., Amin, G., & Mitra, A. (2017b). Carbon sequestration by mangrove vegetation: A case study from Odisha Bhitarkanika Wildlife Sanctuary (BWLS). Parana Journal of Science and Education, 3(4), 1–9.

    Google Scholar 

  • Bhardwaj, S. D., & Panwar, P. (2013). Global warming and climate change effect and strategies for its mitigation. Indian Forester, 129, 741–748.

    Google Scholar 

  • Bhatt, J. R., & Kathiresan, K. (2011). Biodiversity of mangrove ecosystems in India. In J. R. Bhatt et al. (Eds.), Towards conservation and management of mangrove ecosystem in India. India: IUCN.

    Google Scholar 

  • Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K., & Schimel, D. S. (1989). Texture, climate, and cultivation effects on soil organic matter content in US grassland soil. Soil Science Society of America Journal, 53, 800–805.

    Google Scholar 

  • Buschiazzo, D. E., Estelrich, H. D., Aimar, S. B., Viglizzo, E., & Babinec, F. J. (2004). Soil texture and tree converge influence on organic matter. Journal of Range Management, 57, 511–516.

    Google Scholar 

  • Camacho, L. D., Gevana, D. T., Carandang, A. P., Camacho, S. C., Cambalicer, E. A., Rebugio, L. L., & Youn, Y. C. (2011). Tree biomass and carbon stock of a community managed mangrove forest in Bohol, Philippines. Forest Science and Technology, 7(4), 161–167.

    Google Scholar 

  • Campbell, C. A., McConkey, B. G., Zentner, R. P., Selles, F., & Curtin, D. (1996). Tillage and crop rotation effects on soil organic C and N in a coarse-textured typic Haploboroll in southwestern Saskatchewan. Soil and Tillage Resources, 37, 3–14.

    Google Scholar 

  • CCZMCSB (Centre for Coastal Zone management and Coastal Shelter Belt). (2017). Database on coastal states of India. Chennai: Institute of Ocean Management, Anna University.

    Google Scholar 

  • Chadha, S., & Kar, C. S. (1999). Bhitarkanika: Myth and reality. Dehra Dun: Natraj Publishers.

    Google Scholar 

  • Cintron, G., Lugo, A. E., Pool, D. J., & Morris, G. (1978). Mangroves of arid environmental in Puerto Rico and adjacent islands. Biotropica, 10, 110–121.

    Google Scholar 

  • CORIN (Coastal Resources Institute). (1995). The effect of aquaculture on agricultural land and coastal environment. Songkhla: Prince of Songkhla University.

    Google Scholar 

  • Das, S., Ganguly, D., Maiti, T.K., Mukherjee, A., Jana, T.K. and De, T.K. (2012). A Depth–wise diversity of free living N2 fixing and Nitrifying Bacteria and its seasonal variation with nitrogen containing nutrients in the mangrove sediments of Sundarbans, WB, India. Open Journal of Marine Science, 3:112–119.

  • Day, P. R. (1965). Particle fractionation and particle size analysis. In C. A. Black et al. (Eds.), Methods of soil analysis. Agronomy No. 9, Part 1 (pp. 545–567). American Society of Agronomy: Madison.

    Google Scholar 

  • Desai, P. (1992). Coastal environment of Gujarat: Special reference to the Gulf of Kachchh. Remote Sensing Application Mission (pp. 129–146). Ahmedabad: Coastal Environment, Space Application Centre (ISRO).

    Google Scholar 

  • Donato, D. C., Boone Kauffman, J., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293–297.

    CAS  Google Scholar 

  • Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., et al. (2007). A world without mangroves? Science, 317, 41–42.

    CAS  Google Scholar 

  • Duke, N. C., Mackenzie, J., & Wood, A. (2013). Preliminary assessment of biomass and carbon content of mangrove in Solomon Islands, Vanuatu, Fiji, Tonga and Somoa. In: Centre for tropical water and aquatic ecosystem research (TropWATER) Report 13/24, James Cook University, Townsville, 37pp.

  • Ferreira, T. O., Otero, X. L., de Souza, V. S., Jr., Vidal-Torrado, P., Macias, F., & Firme, L. P. (2010). Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (Sao Paulo). Journal of Soils Sediments, 10, 995–1006.

    CAS  Google Scholar 

  • FSI. (2017). India State of Forest Report. Dehradun: Forest Survey of India.

    Google Scholar 

  • Ghasemi, S., Mola, N., & Zakaria, M. (2013). Aboveground biomass, litterfall and forest structure in the Hormozgan Province, Iran. Natural Areas Journal, 33(3), 339–343.

    Google Scholar 

  • Giri, C., Zhu, Z., Tieszen, L. L., Singh, A., Gillette, S., & Kelmelis, J. A. (2008). Mangrove forest distribution and dynamics (1975-2005) of the tsunami-affected region of Asia. Journal of Biogeography, 35, 519–528.

    Google Scholar 

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.

    Google Scholar 

  • Hossain, M.Z., Aziz, C.B. and Saha, M.L. (2012). Relationship between soil physico–chemical properties and total viable bacterial counts in Sunderban mangrove forests, Bangladesh. Dhaka University Journal of Biological Science, 21:169–175.

    Google Scholar 

  • Iftekhar, M. S. (1999). Vegetation dynamics in the Sundarbans and the contribution of salinity between 1985–1995. B.Sc. Thesis. Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh. 54 pp.

  • IPCC (Intergovernmental Panel on Climate Change), Climate Change (2007). The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL (Ed.), Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.

  • IPCC (Intergovernmental Panel on Climate Change), Mitigations of Climate Change (2007). Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (Ed.). Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.

  • Islam, S., & Wahab, A. (2005). A review on the present status and management of mangrove wetland habitat resources in Bangladesh with emphasis on mangrove fisheries and aquaculture. Hydrobiologia, 542(1), 165–190.

    Google Scholar 

  • Jachowski, N. R. A., Quak, M. S. Y., Friess, D. A., Duangnamon, D., Webb, E. L., & Ziegler, A. D. (2013). Mangrove biomass in Southwest Thailand using machine learning. Applied Geography, 45, 311–321.

    Google Scholar 

  • Kathiresan, K., Anburaj, R., Gomathi, V., & Saravankumar, K. (2013). Carbon sequestration potential of Rhizophora mucronata and Avicennia marina as influenced by age, season, growth and sediment characteristics in southeast coast of India. Journal of Coastal Conservation, 17, 397–408.

    Google Scholar 

  • Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31, 343–352.

    Google Scholar 

  • Khan, H. R., Rahman, S., Hussain, M. S., & Adachi, T. (1993). Morphology and characterization of an acid sulfate soil from mangrove flood plain area of Bangladesh. Soil Physical Conditions and Plant Growth, 68, 25–36.

    Google Scholar 

  • Khan, M. N. I., Suwa, R., & Hagihara, A. (2007). Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S.L.) Yong: Vertical distribution in the soil–vegetation system. Wetlands Ecology and Management, 15(2), 141–153.

    CAS  Google Scholar 

  • Komiyama, A., Moriya, H., Prawiroatmodjo, S., Toma, T. and Ogino, K. (1988). Forest primary productivity. In: K. Ogino and M. Chihara (Eds.), Biological System of Mangrove. Ehime University. pp.97–117. 

  • Komiyama, A. S., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21, 471–477.

    Google Scholar 

  • Kong, X. B., Dao, T. H., Qin, J., Li, C., & Zhang, F. (2009). Effects of soil texture and land use interactions on organic carbon in soils in North China cities urban fringe. Geoderma, 154, 86–92.

    CAS  Google Scholar 

  • Lacambra, C., Friess, D., Spencer, T., & Moller, I. (2013). Bioshields: Mangrove ecosystems as resilient natural coastal defences. In F. Renaud, K. Sudmeier-Rieux, & M. Estrella (Eds.), The role of ecosystems in disaster risk reduction: From science to practice. Tokyo: UNU Press.

    Google Scholar 

  • Likens, G. E. (1972). Nutrients and eutrophication. Lawrence: Special symposium American society of Limnology and Oceanography 3pp.

    Google Scholar 

  • Mackey, A. P. (1993). Biomass of the mangrove Avicennia marina (Fprsk.) Vierh. near Brisbane, south eastern Queenland. Australian Journal of Marine Freshwater Resources, 44, 421–725.

    Google Scholar 

  • Mall, L. P., Singh, V. P., & Garge, A. (1991). Study of biomass, litter fall, litter decomposition and soil respiration in monogeneric mangrove and mixed mangrove forests of Andaman Islands. Tropical Ecology, 32, 144–152.

    Google Scholar 

  • Mangrove Forest Division (Wildlife), Rajnagar, Forest Department, Govt. of Odisha (2015). Mangrove of Odisha: A pictorial guide. Jyoti Graphics, 60pp.

  • Mitra, A., & Zaman, S. (2014). Carbon sequestration by coastal floral community. India: The Energy and resources Institute (TERI) press.

    Google Scholar 

  • Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management, 261(7), 1325–1335.

    Google Scholar 

  • Naskar, K., & Mandal, R. (1999). Ecology and biodiversity of Indian mangrove (part-I, II). Delhi: Daya Publishing house 733pp.

    Google Scholar 

  • Panda, M., Murthy, T. V. R., Samal, R. N., Lele, N., Pattnaik, A. K., & Chand, P. K. (2017). Diversity of true and mangrove associates of Bhitarkanika National Park, Odisha, India. International Journal of Advanced Research, 5(1), 1784–1789.

    Google Scholar 

  • Pandey, C. N., & Pandey, R. (2013). Carbon sequestration in mangroves of Gujarat, India. International Journal of Botany Research, 3, 57–70.

    Google Scholar 

  • Perera, K. A. R., & Amarasinghe, M. O. (2017). Partitioning of system total carbon pool of Kaka Oya mangrove ecosystem in Sri Lanka. International Journal of Advances in Science Engineering and Technology, 5(1), 2321–9009.

    Google Scholar 

  • Raghunath, R., & Murthy, S. T. R. (1996). Carbonate and organic matter studies of the shelf of Kasargod, west coast of India. Indian Journal of Marine Science, 25, 355–357.

    Google Scholar 

  • Ramanathan, A. L. (1997). Sediment characteristics of the Pichavaram mangrove environment, southeast coast of India. Indian Journal of Marine Science, 26, 319–322.

    Google Scholar 

  • Rambok, E., Gandaseca, S., Ahmed, O. H., & Majid, N. M. A. (2010). Comparison of selected soil chemical properties of two different mangrove forests in Sarawak. American Journal of Environmental Sciences, 6, 438–441.

    CAS  Google Scholar 

  • Rastetter, E. B., Ryan, M. G., Shaver, G. R., Melillo, J. M., Nadelhoffer, K. J., Hobbie, J. E., & Aber, J. D. (1991). A general biogeochemistry model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate and N deposition. Tree Physiology, 43, 101–126.

    Google Scholar 

  • Robertson, A. I., & Phillips, M. J. (1995). Mangroves as filters of shrimp pond effluent: Predictions and biogeochemical research needs. Hydrobiologia, 295, 311–321.

  • Saenger, P. (1992). Mangrove ecology, silviculture and conservation. The Netherlands: Kluwer Academic Press.

    Google Scholar 

  • Sah, K. D., Sahoo, A. K., Gupta, S. K., & Banerjee, S. K. (1989). Mangrove vegetations of Sunderbans and their effect on the physicochemical and nutrient status of the soils. Proceeding of Indian Natural Science Academy: Part B: Biological Sciences, 55, 125–132.

    Google Scholar 

  • Sahoo, K., Jee, P. K., Dhal, N. K., & Das, R. (2017). Physico-chemical sediment properties of mangrove of Odisha, India. Journal of Oceanography and Marine Research, 5(2), 1–8.

    CAS  Google Scholar 

  • Sahu, S. C., Kumar, M., & Ravindranath, N. H. (2016). Carbon stock in natural and planted mangrove forests of Mahanadi mangrove wetland, East coast of India. Current Science, 110(12), 2253–2260.

    CAS  Google Scholar 

  • Saravanakumar, A., Rajkumar, M., Sesh Serebiah, J., & Thivakaran, G. A. (2008). Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat. Journal of Environmental Biology, 29, 725–732.

    CAS  Google Scholar 

  • Sitoe, S., Mandlate, L. J. C., & Guedes, B. S. (2014). Biomass and carbon stocks of Sofala Bay mangrove forests. Forests, 5, 1967–1981.

    Google Scholar 

  • Spalding, M. D., Blasco, F., & Field, C. D. (1997). World atlas of mangroves. Okinawa: The International Society for Mangrove Ecosystems.

    Google Scholar 

  • Spalding, M. D., Kainuma, M., & Collins, L. (2010). World atlas of mangroves. London: Earthscan.

    Google Scholar 

  • Sukardjo, S. (1994). Soils in the mangrove forests of the Apar nature reserve, Tanah Grogot, East Kalimantan, Indonesia. Southeast Asian Studies, 32, 385–398.

    Google Scholar 

  • Suresh, H. S., Bhatt, D. M., Ravindranath, N. H., & Sukumar, R. (2013). Species diversity, above ground biomass and standing carbon stocks in different mangrove forest patches of coastal Karnataka. In: Mangroves in India: Their biology and uses (pp. 191–198). 

  • Tamai, S., Nakasuga, T., Tabuchi, R., & Ogina, K. (1986). Standing biomass of mangrove forest in southern Thailand. Journal of the Japanese Forestry Society, 68(9), 384–388.

    Google Scholar 

  • Tomlinson, P. B. (1986). The botany of mangroves. NY: Cambridge University Press.

    Google Scholar 

  • Twilley, R. R., & Day, J. W., Jr. (1999). The productivity and nutrient cycling of mangrove ecosystem. In A. Yanez-Arancibia & A. L. Lara Dominguez (Eds.), Ecosistemas de Manglar en America Tropical (pp. 127–152). Silver Spring: Instituto de Ecologia A.C. Mexico, UICN/ORMA, Costa Rica, NOAA/NMFS.

    Google Scholar 

  • Ukpong, I. E. (1997). Vegetation and its relation to soil nutrient and salinity in the Calabar mangrove swamp, Nigeria. Mangroves Salt Marshes, 1, 211–218.

    Google Scholar 

  • Valiela, I., Bowen, J. L., & York, J. K. (2011). Mangrove forests: One of the worlds threatened major tropical environments. Bioscience, 51(10), 807–815.

    Google Scholar 

  • Van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kashibhatla, P. S., Jackson, R. B., Collatz, G. J., & Randerson, J. T. (2009). CO2 emission from forest loss. Nature Geoscience, 2, 737–738.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    CAS  Google Scholar 

  • World Bank (2011). Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: Challenges and opportunities. Crooks, S., Herr, D., Tamelander, J., Laffolet, D., and Vandever, J (Eds.), Environment Department paper 12. Washington, DC.

  • Yoshiro, M., Michimasa, M., Motohiko, K., & Phan, N. H. (1997). Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes, 1, 127–135.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ministry of Earth Sciences, Govt. of India (Sanction no. MoES/36/OOIS/Extra/44/2015 dated 29th November 2016) for providing financial support for carrying out the research program. The first author is grateful to Rajiv Gandhi National Fellowship for SC, University Grants Commission, New Delhi (Award letter no. F1-17.1/2014-15/RGNF-2014-15-SC-ORI-67490/67490/SA-III/(Website), February 2015) for providing financial support. The authors are grateful to Forest Department, Govt. of Odisha for providing necessary permission (Order no. 3296/4WL-465/2016 dated 26th April 2016) to undertake the field work at Bhitarkanika Wildlife Sanctuary, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Banerjee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, G., Banerjee, K. Carbon storage potential of tropical wetland forests of South Asia: a case study from Bhitarkanika Wildlife Sanctuary, India. Environ Monit Assess 191 (Suppl 3), 795 (2019). https://doi.org/10.1007/s10661-019-7690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7690-y

Keywords

Navigation