Skip to main content

Advertisement

Log in

Variability in morphology, phytochemicals, and antioxidants in Polygonatum verticillatum (L.) All. populations under different altitudes and habitat conditions in Western Himalaya, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Polygonatum verticillatum (L.) All. is one among eight species of Astavarga group of plants known for its vitality strengthening properties and used in different herbal formulations. However, systematic investigation on morphology and antioxidant phytochemicals in relation to different environmental variables like altitude and habitat conditions is poorly available. The present study reveals significant (p < 0.05) differences in structural and functional attributes among sixteen different populations of P. verticillatum in West Himalaya. Among the different populations, plants growing in moist habitat and oak forest exhibited maximum plant height, leaf number, biomass and phytochemical content (total phenolics, tannin, and flavonol). Antioxidant activity using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) positively (p < 0.05) correlated with altitude. Presence of strong antioxidant and DNA damage prevention activity of the species validate its use as vitality strengthening and anti-aging properties. Identified suitable altitude, habitat conditions, and forest types can be utilized for reintroduction of species in to suitable agro-climatic condition. This will also help in obtaining higher quality produce and management practices for conservation of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso-Amelot, M. E., Oliveros-Bastidas, A., & Calcagno-Pisarelli, M. P. (2007). Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation, and rain regime. Biochemical Systematics and Ecology, 35, 1–10.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  • Ballare, C. L., Rousseaux, M. C., Searles, P. S., et al. (2001). Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina)—an overview of recent progress. Journal of Photochemistry and Photobiology B: Biology, 62, 67–77.

    Article  CAS  Google Scholar 

  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70–76.

    Article  CAS  Google Scholar 

  • Bhatt, I. D., Dauthal, P., Rawat, S., Gaira, K. S., Jugran, A., Rawal, R. S., & Dhar, U. (2012). Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Scientia Horticulturae, 136, 61–68.

    Article  CAS  Google Scholar 

  • Bhatt, I. D., Rawat, S., & Rawal, R. S. (2013). Antioxidants in medicinal plants (pp. 295–326). Berlin, Heidelberg: In Biotechnology for medicinal plants. Springer.

    Google Scholar 

  • Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: determination of radical-scavenging efficiencies. In Methods Enzymol., 186, 343–355.

    Article  CAS  Google Scholar 

  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74, 2157–2184.

    Article  CAS  Google Scholar 

  • Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3).

  • Cirak, C., Radusiene, J., Jakstas, V., Ivanauskas, L., Seyis, F., & Yayla, F. (2017). Altitudinal changes in secondary metabolite contents of Hypericum androsaemum and Hypericum polyphyllum. Biochemical Systematics and Ecology, 70, 108–115.

    Article  CAS  Google Scholar 

  • Debnath, T., Park, S. R., Jo, J. E., & Lim, B. O. (2013). Antioxidant and anti-inflammatory activity of Polygonatum sibiricum rhizome extracts. Asian Pacific Journal of Tropic Disease, 3(4), 308–313.

    Article  CAS  Google Scholar 

  • Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India, 52, 794–804.

    CAS  Google Scholar 

  • Fusco, D., Colloca, G., Monaco, M. R. L., & Cesari, M. (2007). Effects of antioxidant suppliants on the aging process. Clinical Interventions in Aging, 2, 377–387.

    CAS  Google Scholar 

  • Gill, S. S., Anjum, N. A., Gill, R., Jha, M., & Tuteja, N. (2015). DNA damage and repair in plants under ultraviolet and ionizing radiations. Scientific World Journal, 2015, 250158.

    Article  Google Scholar 

  • Giri, L., Belwal, T., Bahukhandi, A., Suyal, R., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2017). Oxidative DNA damage protective activity and antioxidant potential of Ashtvarga species growing in the Indian Himalayan Region. Industrial Crops and Products, 102, 173–179.

    Article  CAS  Google Scholar 

  • Goetz, M. E., Kunig, G., Riederer, P., & Youdim, M. B. H. (1994). Oxidative stress: free radical production in neural degeneration. Pharmacology & Therapeutics, 63, 37–122.

    Article  CAS  Google Scholar 

  • Guo, X. D., Ma, Y. J., Parry, J., Gao, J. M., Yu, L. L., & Wang, M. (2011). Phenolics content and antioxidant activity of tartary buckwheat from different locations. Molecules, 16, 9850–9867.

    Article  CAS  Google Scholar 

  • Halliwell, B. (1987). Oxidants and human disease: some new concepts. The FASEB Journal, 1, 358–364.

    Article  CAS  Google Scholar 

  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.

    Article  CAS  Google Scholar 

  • Hammer, O., Harper, D. A., & Paul, D. R. (2001). PAST palaeontological statistics, software package for education and data analysis. Palaeontologia Electronica, 4, 4–9.

    Google Scholar 

  • Harborne, J. B., Williams, C. A., & Wilson, K. L. (1982). Flavonoids in leaves and inflorescences of Australian Cyperus species. Phytochemistry., 21, 2491–2507.

    Article  CAS  Google Scholar 

  • Huang, P. L., Gan, K. H., Wu, R. R., & Lin, C. N. (1997). Benzoquinones, a homo isoflavanone and other constituents from Polygonatum altelobatum. Phytochemistry., 44, 1369–1373.

    Article  CAS  Google Scholar 

  • Jugran, A. K., Bahukhandi, A., Dhyani, P., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2016). Impact of altitudes and habitats on valerenic acid, total phenolics, flavonoids, tannins, and antioxidant activity of Valeriana jatamansi. Applied Biochemistry and Biotechnology, 179, 911–926.

    Article  CAS  Google Scholar 

  • Jugran, A. K., Joshi, R. K., Bhatt, I. D., Rawal, R. S., & Palni, L. M. S. (2018). The relationship of visiting insect diversity and density of Valeriana jatamansi with increasing altitude in Western Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 371-378.

  • Knoop, W. T., & Walker, B. H. (1985). Interactions of woody and herbaceous vegetation in a southern African savanna. Journal of Ecology, 235–253.

  • Kumaran, A. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109–114.

    Article  CAS  Google Scholar 

  • Kumaran, A., & Kaunakaran, R. J. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT- Food Science and Technology, 40, 344–352.

    Article  CAS  Google Scholar 

  • Li, S., Li, S. K., Gan, R. Y., Song, F. L., Kuang, L., & Li, H. B. (2013). Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Industrial Crops and Products, 51, 289–298.

    Article  CAS  Google Scholar 

  • Oloumi, H., & Hassibi, N. (2011). Study the correlation between some climate parameters and the content of phenolic compounds in roots of Glycyrrhiza glabra. Journal of Medicinal Plant Research, 5, 6011–6016.

    CAS  Google Scholar 

  • Rapposelli, E., Melito, S., Barmina, G. G., Foddai, M., Azara, E., & Scarpa, G. M. (2015). Relationship between soil and essential oil profiles in Salvia desoleana populations: preliminary results. Natural Product Communication 10, 1615–1618.

  • Rawat, S., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2014). Effect of developmental stage on total phenolics composition and anti-oxidant activities in Hedychium spicatum Buch.-Ham. ex. D. Don. The Journal of Horticultural Science and Biotechnology, 89, 557–563.

    Article  Google Scholar 

  • Rawat, S., Jugran, A. K., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2017). Effects of genetic diversity and population structure on phenolic compounds accumulation in Hedychium spicatum. Ecological Genetics and Genomics, 3, 25–33.

    Article  Google Scholar 

  • Ruhland, C. T., Fogal, M. J., Buyarski, C. R., & Krna, M. A. (2007). Solar ultraviolet-B radiation increases phenolic content and ferric reducing antioxidant power in Avena sativa. Molecules., 12, 1220–1232.

    Article  CAS  Google Scholar 

  • Russo, A., Cardile, V., Caggia, S., Gunther, G., Troncoso, N., & Garbarino. (2011). Boldo prevents UV light and nitric oxide-mediated plasmid DNA damage and reduces the expression of Hsp70 protein in melanoma cancer cells. The Journal of Pharmacy and Pharmacology, 63, 1219–1229.

    Article  CAS  Google Scholar 

  • Sadowska-Bartosz, I., & Bartosz, G. (2014). Effect of antioxidants supplementation on aging and longevity. BioMed Research International, 2014, 404–680.

  • Skała, E., Sitarek, P., Rozalski, M., Krajewska, U., Szemraj, J., Wysokińska, H., & Śliwiński, T. (2016). Antioxidant and DNA repair stimulating effect of extracts from transformed and normal roots of Rhaponticum carthamoides against induced oxidative stress and DNA damage in CHO cells. Oxidative Medicine and Cellular Longevity, 2016, 5753139.

    Google Scholar 

  • Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., & Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22, 102–106.

    CAS  Google Scholar 

  • Sharaf, A. A., Om-Mohammed, A. K., El-Bialy, E. H., & Mohamed, M. M. (2013). Effect of altitudinal gradients on the content of carbohydrate, protein, proline and total phenols of some desert plants in Saint Katherine Mountain, South Sinai, Egypt. Middle East Journal of Scientific Research, 14, 122–129.

    CAS  Google Scholar 

  • Singh, N., & Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85, 611–616.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Wang, Q. W., Nagano, S., Ozaki, H., Morinaga, S. I., Hidema, J., & Hikosaka, K. (2016). Functional differentiation in UV-B-induced DNA damage and growth inhibition between highland and lowland ecotypes of two Arabidopsis species. Environmental and Experimental Botany, 131, 110–119.

    Article  CAS  Google Scholar 

  • Wong, C. C., Li, H. B., Cheng, K. W., & Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 97, 705–711.

    Article  CAS  Google Scholar 

  • Zlatev, Z. S., Lidon, F. J., & Kaimakanova, M. (2012). Plant physiological responses to UV-B radiation. Emirates Journal of Food and Agriculture, 24, 481.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Director of G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, for the support and encouragement.

Funding

This study was partially funded by the Botanical Garden Scheme of Ministry of Environment, Forest & Climate Change (MoEF&CC), New Delhi (F.N. BSI-290/6/2013-Tech; Dated 29/09/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra D. Bhatt.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyal, R., Rawat, S., Rawal, R.S. et al. Variability in morphology, phytochemicals, and antioxidants in Polygonatum verticillatum (L.) All. populations under different altitudes and habitat conditions in Western Himalaya, India. Environ Monit Assess 191 (Suppl 3), 783 (2019). https://doi.org/10.1007/s10661-019-7687-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7687-6

Keywords

Navigation